Hello Northeast Ohio Counties!

Wheat is being harvested across Northeast Ohio with good yields being reported. The condition of other crops also look good in the area after receiving a few rain showers last week.

The 2020 Farm Science Review is going to be held virtually this year. You can read more about it in today's first article and we will bring you more information regarding FSR, like how to sign up, in future newsletters.

Have a great week everyone!
Farm Science Review will be a virtual show in 2020

By: Sherrie R. Whaley
Source: https://cfaes.osu.edu/news/articles/farm-science-review-will-be-virtual-show-in-2020

For the first time in its nearly 60-year history, The Ohio State University’s Farm Science Review, scheduled for Sept. 22 to Sept. 24, will not be held in-person. Instead, a virtual show will be implemented for 2020.

The farm show, sponsored by Ohio State’s College of Food, Agricultural, and Environmental Sciences (CFAES), annually attracts over 100,000 visitors from all over the United States and Canada to the show site in London, Ohio.

“We are committed to delivering a robust and innovative virtual show in support of agriculture during this pandemic,” said Cathann A. Kress, vice president and dean of CFAES.

“Throughout its history, the Farm Science Review has been at the forefront of showcasing the future of agriculture,” she said. “While it may look different in 2020, we will continue to meet the needs of our growers and partners through access to exhibitors, virtual demonstrations, and education about the most recent advancements in agricultural production.”

The three-day event normally allows agricultural producers to peruse 4,000 product lines from 600 commercial exhibitors, view field demonstrations, and learn the latest in agricultural production. Popular educational programs feature specialists from The Ohio State University, Central State University, and other land-grant institutions.

“Due to the rapidly changing conditions in the spread of COVID-19 across the U.S., the decision was made to hold a virtual show,” said Nick Zachrich, Farm Science Review manager. “We have worked diligently to plan for another incredible show demonstrating the newest developments in equipment, research, and application to support agricultural production.”

Current conditions are not conducive to hosting an in-person event. “With our multigenerational audience, we determined a need to prioritize everyone’s health and
ensure that we are doing our part to contain the spread of the virus during this global pandemic," he said.

While extremely disappointing for everyone involved, Zachrich said that Farm Science Review management and its executive committee believe this is the right decision to keep visitors, exhibitors, partners, and staff safe.

In addition, the State of Ohio Responsible Restart guidelines currently limit mass gatherings. There is little reason to anticipate changes in the next two months that would provide for the ability to meet Farm Science Review’s daily in-person attendance of between 35,000 to 50,000 visitors.

“We understood early on that regardless of the number of cases, the show would have to take a drastically different approach in order to meet the health and safety requirements for COVID-19, such as physical distancing and sanitization,” Zachrich said. “While we would have liked to wait until closer to the event to make a decision, we felt compelled to let suppliers, exhibitors, and partners know so they can begin to plan for a virtual show.”

More information will be shared in the forthcoming weeks about the 2020 virtual Farm Science Review program and how to engage. Visit fsr.osu.edu for ongoing updates.

All media inquiries should be directed to Sherrie Whaley, CFAES media relations coordinator, whaley.3@osu.edu, 614-292-2137 or 614-582-6111.
Moderate summer harmful algal bloom predicted for western Lake Erie

By Jill Jentes Banicki

COLUMBUS, Ohio -- The National Oceanic and Atmospheric Administration and its research partners predict that western Lake Erie will experience a moderate harmful algal bloom this summer. This year’s bloom is expected to measure 4.5 on the severity index – among the smaller blooms since 2011 – but could possibly range between 4 and 5.5, compared to 7.3 last year. An index above 5 indicates the more severe blooms.

Lake Erie blooms consist of cyanobacteria, also called blue-green algae, capable of producing the liver toxin microcystin which poses a risk to human and wildlife health. Such blooms may result in higher costs for cities and local governments that need to treat drinking water, prevent people from enjoying fishing, swimming, boating and visiting the shoreline, and harm the region’s vital summer economy. These effects will vary in location and severity due to winds that may concentrate or dissipate the bloom.

“A smaller bloom forecast for Lake Erie and the surrounding coastal communities is encouraging, but we cannot be complacent,” said Nicole LeBoeuf, acting director of NOAA’s National Ocean Service. “It is our hope that these science-based tools will help local leaders plan for the predicted bloom and best position the community and its visitors to deal with what comes.”

Scientists expect this year’s bloom to measure 4.5 on the severity index. The 2018 bloom had a severity of 3.5. Photo: Ohio Sea Grant.
The severity index is based on the bloom’s biomass – the amount of algae – over a sustained period. The largest blooms occurred in 2011, with a severity index of 10, and 2015, at 10.5. NOAA, the Environmental Protection Agency, Environment and Climate Change Canada and its other partners have set a goal of 3, which was last seen in 2012.

The size of a bloom isn’t necessarily an indication of how toxic it is. For example, the toxins in a large bloom may not be as concentrated as in a smaller bloom. Each algal bloom is unique in terms of size, toxicity and ultimately its impact on local communities. NOAA is actively developing tools to detect and predict how toxic blooms will be.

Bloom expected in late July

With cool lake temperatures in May and early June, the cyanobacteria only started growing in the last week. NOAA expects a more typical start of the visible bloom in mid to late July. The extremely high lake levels are not expected to have a significant effect on the bloom size. While the bloom typically produces some toxins, it is too early to predict how toxic the bloom will be when it starts.

However, calm winds tend to allow the algal toxins to concentrate near the lakes’ surface. The duration of the bloom depends on how windy September may be, which cannot be predicted this far in advance. The bloom will remain mostly in some areas of the western basin, and most of the rest of the lake will not be affected.

“The expectation of a smaller bloom than 2019 is clearly something we should welcome. Nevertheless, we still have work to do,” said Christopher Winslow, director of the Ohio Sea Grant College Program, and Stone Laboratory at Put-in-Bay on Lake Erie. Both programs are a part of The Ohio State University College of Food, Agricultural and Environmental Sciences (CFAES).

“Thankfully, the support of Governor DeWine to address water quality issues through the H2Ohio initiative and the research being funded through the Ohio Department of Higher Education’s Harmful Algal Bloom Research Initiative are important parts of that work,” Winslow said. “Additionally, we are fortunate that Ohio has capitalized on productive working relationships between our state agencies and our research institutions. Addressing nutrient loading and harmful algal blooms clearly demands an ‘all-hands-on-deck’ approach.”

The Lake Erie forecast is part of a NOAA ecological forecasting initiative that aims to deliver accurate, relevant, timely and reliable ecological forecasts directly to coastal resource managers and the public. In addition to the early season projections from NOAA and its partners, NOAA also issues HAB forecasts during
the bloom season. These forecasts provide the current extent and 5-day outlooks of where the bloom will travel and what concentrations are likely to be seen, allowing managers to determine whether to take preventative actions.

“The mild rainfall this spring compared to last year will lead to a much smaller bloom,” said Richard Stumpf, NOAA’s National Centers for Coastal Ocean Science’s lead scientist for the seasonal Lake Erie bloom forecast. “While the bloom this year probably will not be as mild as in 2018, we still expect to see large areas without substantial effects. This depends on where the bloom gets pushed by the wind, so anyone using the lake needs to regularly check the location of the bloom.

Tax Value of Farmland Expected to Drop
Source: https://u.osu.edu/ohioagmanager/2020/07/10/tax-value-of-farmland-expected-to-drop/

There’s a bit of good news for Ohio farmers to counter the bad news caused by COVID-19, as well as by last year’s historic rain. In counties scheduled for property value updates in 2020—about half of Ohio’s 88 counties—the average value of farmland enrolled in the Current Agricultural Use Value (CAUV) program should be about 40% lower than 2017–2019, or about $665 per acre.

That’s according to projections by researchers at The Ohio State University College of Food, Agricultural, and Environmental Sciences (CFAES).

The same projections say that in counties due for property value updates in 2021—another quarter of Ohio’s counties—average CAUV values should be about 25% less than 2018–2020, or about $760 per acre.

The declines should mean lower property taxes, on average, for most of the farmers in those counties.

The projections were published in a May report by postdoctoral researcher Robert Dinterman and Ani Katchova, associate professor and farm income enhancement chair, both of CFAES’ Department of Agricultural, Environmental, and Development Economics.

“Less money paid in property tax will help reduce farmers’ costs and allow them to keep a greater share of the revenues they bring in,” Dinterman said.

But he noted that CAUV values are “not exactly equal to the property tax someone will pay.” A farm’s total property tax bill, he said, also depends on how many taxing
jurisdictions the land is subject to and the tax rate, or millage rate, within those jurisdictions.

There could “certainly be a few cases where an agricultural landowner sees a large reduction in their CAUV value but has a corresponding increase in their millage rate and ends up paying the same in property taxes,” Dinterman said.

Ohio counties update their property values, including their CAUV values, every three years on a rotating basis, with about a third of the counties seeing updates every year.

The new values then apply for the next three years. The state’s CAUV program allows farmland to be taxed based on its agricultural value instead of its full market value. Enrollment in the program, which is voluntary, “normally results in a substantially lower tax bill for working farmers,” an Ohio Department of Taxation website says.

A county’s CAUV values are based, roughly, on a formula using net farm income data from over the past five to seven years. More specifically, the data comes from a hypothetical farm producing soybeans, corn, and wheat during that period.

“In a nutshell, CAUV values are high when the previous five to seven years of farm income were high. CAUV values are low when the previous five to seven years of farm income were low,” Dinterman said.

Farmers had a boom in net income from about 2010-2014, which was partly a major cause of rising CAUV values in the past, he said.

“So now that we have been in a prolonged period of what people might consider low farm incomes, those values start to enter the CAUV formula and in turn lower their values,” Dinterman said.

“Clearly a farmer does not want to have low income, but a bit of good news that comes with that is that at least their tax bills will be a bit lower,” he said.

Dinterman and Katchova’s report also states that based on early projections, the quarter of Ohio counties scheduled for CAUV updates in 2022 will see only a small decrease in their values, about 1%, to $880 per acre.

That ties in with the researchers’ expectation that the CAUV declines won’t continue. “We should give a bit of a warning to farmers that the recent trend we’ve seen in reduced CAUV values has plateaued,” Dinterman said.
The reason: a major legislative change to the CAUV formula—related to how capitalization rates are calculated—was started in 2017. The change was phased in, and 2020 marks the end of the phase-in.

“That phase-in over 2017–2020 helped ease into the lowest CAUV values we’ve seen since about 2012,” Dinterman said. “We’re likely to stay within a range of about $650–$900 for average CAUV values in the foreseeable future.”

Read the report at go.osu.edu/may2020cauv.

FOR MORE INFORMATION CONTACT:
Kurt Knebusch
knebusch.1@osu.edu
330-263-3776

SOURCE(S):
Robert Dinterman
dinterman.1@osu.edu

Ani Katchova
katchova.1@osu.edu

Western Bean Cutworm Numbers Starting to Increase

By Amy Raudenbush

Source: https://agcrops.osu.edu/newsletter/corn-newsletter/2020-22/western-bean-cutworm-numbers-starting-increase

We are in the third week of monitoring for Western bean cutworm (WBC) in Ohio. Numbers of WBC moths doubled from the previous week; however, overall numbers across the state remain low. Trap counts for the week of July 6 – 12 resulted in a total of 117 WBC adults (1.3 average moths per trap) (Figure 1). A total of 27 counties monitored 91 traps across Ohio. Sandusky County reported capturing more than 1 moth / day over the 7-day monitoring period; therefore, scouting for egg masses should begin in this county. Fulton County is approaching scouting threshold. All other counties monitored remain below threshold.
Scouting guidelines
Scout pre-tassel corn approaching tassel fields. Choose at least 20 consecutive plants in 5 random locations (scout different areas of the field that may be in different growth stages). Inspect the uppermost 3–4 leaves. Consider treatment if >8% of inspected plants have eggs or larvae (field corn) or in sweet corn, if >4% of inspected plants have eggs or larvae (processing market), or >1% of plants (fresh-market).

Treatment
If the number of egg masses/larvae observed exceed threshold, many insecticides are available to adequately control WBC, especially those containing a pyrethroid. However, as with any ear-burrowing caterpillar pest, timing is critical. Insecticide applications must occur after egg hatch, or after tassel emergence, but before caterpillars enter the ear. If eggs have hatched, applications should be made after 95% of the field has tassel. If eggs have not hatched, monitor for the color change. Hatch will occur within 24–48 hours once eggs turn purple. To search for larval injury after it has occurred, search the corn for ears having feeding holes on the outside of the husks.

Figure 1. Average Western bean cutworm adult per trap followed by total number of traps in the county in parentheses for week ending July 12, 2020.

Figure 2. Western bean cutworm egg mass
Corn Pollination
By: Alexander Lindsey
Source: https://agcrops.osu.edu/newsletter/corn-newsletter/2020-22/corn-pollination

As temperatures remain hot for much of the state, corn continues to put on leaf collars and is approaching the start of flowering. Corn is a plant that has separate male (anthers on the tassel) and female (silks in the ear) flowers, and it is critical that the timing of flower emergence and activity overlap (sometimes referred to as the ‘nicking’ period) to ensure good pollination and kernel set. Another term used for flowering synchrony is the ‘anthesis-silking interval,’ which is the time from pollen shedding to silk emergence.

The start of pollen shed from the anthers on the tassel is called ‘anthesis’ and can occur before the plant reaches the VT growth stage. The VT growth stage is defined as “plants with all branches of the tassel fully visible, extended outward, and not held in by the upper leaves.” Many modern hybrids begin shedding pollen while the tassel is still emerging from the surrounding leaves.

Silk emergence signals the start of the R1 growth stage, which is defined as “one or more silks extending outside the husk leaves of the ear.” In many modern hybrids, we will actually see silks emerging prior to the tassel being fully emerged. This leads to a negative anthesis silking interval (silk emerges before pollen shedding), which is one way breeders have improved yields in modern hybrids. Shortening the time from anthesis to silking increases the likelihood of pollination and has helped increase yield over time. High temperatures and low moisture levels may lengthen the anthesis-silking interval compared to normal conditions, but both anthesis and silking last for approximately six days and occur throughout the day, so poor nick is not usually a common occurrence. Planting multiple hybrids in a field that vary slightly in their relative maturity or days to flowering can also help reduce the likelihood that the nicking period is missed.

Both high temperatures and moisture can also affect pollination success. It is recognized that temperatures above 90 degrees F can cause pollen to be non-viable, but much of the pollen shed in corn occurs in the morning hours before temperatures climb to these levels. Additionally, new pollen is made each day during this phase. The longevity of the pollen shed at lower temperatures can also
be affected by the relative humidity. Pollen sheds from the plant with a moisture content of 50-65%, and can lose viability once the moisture content drops to 30%. In low relative humidity and high temperature conditions, this can happen more quickly. Moisture stress can slow the rate of silk elongation as this is driven by turgor pressure. Low relative humidity in combination with high temperatures can cause silks to desiccate and can reduce pollination success, but this may not be a major issue given the silks are close to the stalk and in the middle of the canopy where relative humidity tends to be greater than outside the canopy.

Sources

Additional Commodities Eligible for Coronavirus Food Assistance Program

By: Ohio FSA

U.S. Secretary of Agriculture Sonny Perdue announced an initial list of additional commodities that have been added to the Coronavirus Food Assistance Program (CFAP), and that the U.S. Department of Agriculture (USDA) made other adjustments to the program based on comments received from agricultural producers and organizations and review of market data. Producers will be able to submit applications that include these commodities on Monday, July 13, 2020. USDA’s Farm Service Agency (FSA) is accepting through Aug. 28, 2020, applications for CFAP, which helps offset price declines and additional marketing costs because of the coronavirus pandemic. USDA expects additional eligible commodities to be announced in the coming weeks.

USDA collected comments and supporting data for consideration of additional commodities through June 22, 2020.
Changes to CFAP include:

• Adding the following commodities: alfalfa sprouts, anise, arugula, basil, bean sprouts, beets, blackberries, Brussels sprouts, celeriac (celery root), chives, cilantro, coconuts, collard greens, dandelion greens, greens (others not listed separately), guava, kale greens, lettuce – including Boston, green leaf, Lolla Rossa, oak leaf green, oak leaf red and red leaf – marjoram, mint, mustard, okra, oregano, parsnips, passion fruit, peas (green), pineapple, pistachios, radicchio, rosemary, sage, savory, sorrel, fresh sugarcane, Swiss chard, thyme and turnip top greens.

• Expanding for seven currently eligible commodities – apples, blueberries, garlic, potatoes, raspberries, tangerines and taro – CARES Act funding for sales losses because USDA found these commodities had a 5 percent or greater price decline between mid-January and mid-April as a result of the COVID-19 pandemic. Originally, these commodities were only eligible for marketing adjustments.

• Determining that peaches and rhubarb no longer qualify for payment under the CARES Act sales loss category.

• Correcting payment rates for apples, artichokes, asparagus, blueberries, cantaloupes, cucumbers, garlic, kiwifruit, mushrooms, papaya, peaches, potatoes, raspberries, rhubarb, tangerines and taro.

Additional details can be found in the Federal Register in the Notice of Funding Availability (NOFA) and Final Rule Correction and at www.farmers.gov/cfap.

Producers have several options for applying to the CFAP program:

• Using an online portal, accessible at farmers.gov/cfap, allows producers with secure USDA login credentials—known as eAuthentication—to certify eligible commodities online, digitally sign applications and submit directly to the local USDA Service Center. New commodities will be available in the system on July 13, 2020.

• Completing the application form using our CFAP Application Generator and Payment Calculator found at farmers.gov/cfap. This Excel workbook allows customers to input information specific to their operation to determine estimated payments and populate the application form, which can be printed, then signed and submitted to their local USDA Service Center. An updated version with the new commodities will be available on the website on July 13, 2020.
• Downloading the AD-3114 application form from farmers.gov/cfap and manually completing the form to submit to the local USDA Service Center by mail, electronically or by hand delivery to an office drop box. In some limited cases, the office may be open for in-person business by appointment. Visit farmers.gov/coronavirus/service-center-status to check the status of your local office.

USDA Service Centers can also work with producers to complete and securely transmit digitally signed applications through two commercially available tools: Box and OneSpan. Producers who are interested in digitally signing their applications should notify their local service centers when calling to discuss the CFAP application process. You can learn more about these solutions at farmers.gov/mydocs.

Getting Help from FSA

New customers seeking one-on-one support with the CFAP application process can call 877-508-8364 to speak directly with a USDA employee ready to offer general assistance. This is a recommended first step before a producer engages the team at the FSA county office at their local USDA Service Center.

All other eligibility forms, such as those related to adjusted gross income and payment information, can be downloaded from farmers.gov/cfap. For existing FSA customers, these documents are likely already on file.
PESTICIDE COLLECTION DAY:

ODA CLEAN SWEEP

Tuesday, August 25th, 2020 - 9:00 AM to 3:00 PM

Location: Perry Coal and Feed 4204 Main St, Perry, OH 44081

Cost: Free

Details: Pesticide Collection for all Commercial and Private Agricultural Applicators (Nurseries, Farms, Grape Growers, Christmas Tree Growers)

Not intended for homeowners

Contact information: Thomas deHaas – OSU Lake County Extension, ANR Educator dehaas.2@osu.edu or 440-853-2630

CFAES provides research and related educational programs to clientele on a nondiscriminatory basis. For more information, visit cfaesdiversity.osu.edu. For an accessible format of this publication, visit cfaes.osu.edu/accessibility.