Hello Northeast Ohio Counties!

We keep getting glimpse of hope in the weather but yet again we have expected thunderstorms on the tail end of this week. Take a look at some of todays article to see how the weather has impacted corn historically, and suggestions when it comes to late planted soybeans.

We also have some great programs coming up soon so make sure you take a look at todays flyers to make sure the dates are on your calendar.

Stay safe!

Lee Beers
Trumbull County Extension Educator

Andrew Holden
Ashtabula County Extension Educator
Recommendations for Late Planted Soybeans

By: Laura Lindsey

Source: https://agcrops.osu.edu/newsletter/corn-newsletter/2019-12/recommendations-late-planted-soybeans

Persistent wet weather is likely to push soybean planting into late May-early June in many areas of the state. Late planting reduces the cultural practice options for row spacing, seeding rate, and relative maturity.

Row spacing. The row spacing for June planting should be 7.5 to 15-inches, if possible. Row width should be narrow enough for the soybean canopy to completely cover the interrow space by the time the soybeans begin to flower. The later in the growing season soybeans are planted, the greater the yield increase due to narrow rows.

Seeding rate. Higher seeding rates are recommended for June plantings. Final (harvest) population for soybeans planted in June should be 130,000 to 150,000 plants/acre. (For May planting dates, a final stand of 100,000 to 120,000 plants/acre is generally adequate.)

![Graph showing relative yield vs. final stand](image)

Data from AgCrops Team, 2004-2014

Relative maturity. For June planting dates, plant the latest maturing variety that will reach physiological maturity before the first killing frost. This is to allow the plants to grow vegetatively as long as possible to produce nodes where pods can form before vegetative growth is slowed due to flowering and pod formation. The recommended relative maturity ranges are shown in the table:

<table>
<thead>
<tr>
<th>Northeast Ohio Agriculture</th>
<th>OHIO STATE UNIVERSITY EXTENSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashtabula and Trumbull Counties</td>
<td></td>
</tr>
</tbody>
</table>

1
<table>
<thead>
<tr>
<th></th>
<th>Planting Date</th>
<th>Suitable Relative Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Ohio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>June 1-15</td>
<td>3.2-3.8</td>
</tr>
<tr>
<td></td>
<td>June 15-30</td>
<td>3.1-3.5</td>
</tr>
<tr>
<td></td>
<td>July 1-10</td>
<td>3.0-3.3</td>
</tr>
<tr>
<td>Central Ohio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>June 1-15</td>
<td>3.4-4.0</td>
</tr>
<tr>
<td></td>
<td>June 15-30</td>
<td>3.3-3.7</td>
</tr>
<tr>
<td></td>
<td>July 1-10</td>
<td>3.2-3.5</td>
</tr>
<tr>
<td>Southern Ohio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>June 1-15</td>
<td>3.6-4.2</td>
</tr>
<tr>
<td></td>
<td>June 15-30</td>
<td>3.5-3.9</td>
</tr>
<tr>
<td></td>
<td>July 1-10</td>
<td>3.4-3.7</td>
</tr>
</tbody>
</table>

Right cover-crop mix good for both Chesapeake and bottom lines

By Jeff Mulhollem

Source: https://news.psu.edu/story/571677/2019/04/29/research/right-cover-crop-mix-good-both-chesapeake-and-bottom-lines

Planting and growing a strategic mix of cover crops not only reduces the loss of nitrogen from farm fields, protecting water quality in the Chesapeake Bay, but the practice also contributes nitrogen to subsequent cash crops, improving yields, according to researchers.

The economic benefits of taking cover-cropping to the next level are important because the

Researchers tested mixed-species cover crop stands such as this one to see if they could balance the nitrogen-fixing and nitrogen-scavenging capabilities of individual species. Individually, cover crop species excel at either reducing nitrogen leaching or increasing nitrogen supply to cash crops. But they fail to excel at both simultaneously.

IMAGE: CATALINA MEJIA / PENN STATE
benefits will convince more corn, wheat and soybean growers in the Northeast and Mid-Atlantic regions to adopt the practice, the researchers said. Those cash crops are grown over large acreages mainly to feed livestock such as dairy and beef cows, hogs, and poultry.

"Cover crops are one of the main tools we have for reducing nutrients in the waters of the Chesapeake Bay — they have the potential to be agricultural nitrogen regulators that reduce leaching through soils and then deliver nitrogen to subsequent cash crops," said Jason Kaye, professor of soil biogeochemistry. His research group in Penn State's College of Agricultural Sciences has been studying cover-crop species for nearly a decade. Yet regulating nitrogen in this way has proven difficult, because cover-crop species excel at either reducing nitrogen leaching or increasing nitrogen supply to cash crops, but they fail to excel at both simultaneously. Researchers tested mixed-species cover-crop stands to see if they could balance the nitrogen-fixing and nitrogen-scavenging capabilities of individual species.

They tested six cover-crop monocultures and four mixtures for their effects on nitrogen cycling in an organically managed maize-soybean-wheat feed-grain rotation at Penn State’s Russell E. Larson Agricultural Research Center. For three years, researchers used a suite of integrated approaches to quantify soil nitrogen dynamics and measure plant nitrogen uptake.

In the study, all cover-crop species — including legume monocultures — reduced nitrogen leaching compared to fallow plots. Cereal rye monocultures reduced nitrogen leaching by 90 percent, relative to fallow plots. Notably, mixtures with a low-seeding rate of rye did almost as well. Austrian winter-pea monocultures increased nitrogen uptake in cash crops the most, relative to fallow. Conversely, rye monocultures decreased nitrogen uptake, relative to fallow.

The research's results, published this month in PLOS One, show clearly that cover-crop species selection and mixture design can substantially mitigate tradeoffs between

Cover crop mixtures including legumes that include cereal rye (shown here) dramatically decreased pollution because grasses establish root biomass that holds nitrogen and provides microbial activity in the soil.

IMAGE: CATALINA MEJIA / PENN STATE
nitrogen retention and nitrogen supply to cash crops, providing a powerful tool for managing nitrogen in cropping systems, Kaye pointed out.

"The mixtures were all very good at reducing pollution, but their impact on yields was limited," he said. "Mixtures that performed best are the ones that had a higher proportion of legumes and mixed in a little bit of the grasses such as rye. Mixtures that include cereal rye dramatically decreased pollution because grasses establish root biomass that holds nitrogen and provides microbial activity in the soil."

The process in which cover crops keep nutrients out of streams, protecting the bay, and pass along nitrogen to cash crops is straightforward. Kaye noted that in the fall after a cash crop is harvested, there is nitrogen in the soil that could go to the Chesapeake. A cover crop can take up that nitrogen and then, when the cover crop is killed in the spring, the nitrogen in the tissues of the cover crop are decomposed by microorganisms in the soil and passed on to the next cash crop, increasing yields.

The research findings may hold timely significance for Pennsylvania organic feed-grain producers, Kaye believes. Cover crops are especially important in organic systems in which tillage is used to manage and kill weeds and cover crops. In those situations, reducing erosion in disturbed soil is critical.

"Organic agriculture is growing very quickly in Pennsylvania," he said. "One example is that Bell & Evans recently expanded organic poultry operations in the state. So, farmers potentially have a new and expanding market for feed grains that are grown organically."
Incorporating cover-crop mixtures into their rotations will help them be more productive without increasing nutrient pollution."

Also working on the project at Penn State are Charles White, assistant professor and extension specialist in soil fertility and nutrient management; Brosi Bradley, research technologist in ecosystem science and management; and Catalina Mejia, graduate student in ecosystem science and management.

Others on the project include Denise Finney, Department of Biology, Ursinus College; Meagan Schipanski, Department of Soil and Crop Sciences, Colorado State University; Maria Alonso-Ayuso, Department of Agricultural Production, Universidad Politécnica de Madrid; Mitch Hunter, Department of Agronomy and Plant Genetics, University of Minnesota; and Mac Burgess, Department of Agronomy, Montana State University; Penn State's College of Agricultural Sciences supported this research.

Delayed Planting Effects on Corn Yield: A “Historical” Perspective

By Allen Geyer and Peter Thomison

According to the USDA/NASS, for the week ending May 5, only 2% of Ohio’s projected corn acreage was planted - compared to 20% last year and 27% for the five-year average. Persistent rains and saturated soil conditions have delayed corn planting. The weather forecast this week indicates the likelihood of more rain, so it is probable that many soggy fields may not dry out soon. Long-term research by universities and seed companies across the Corn Belt gives us a pretty good idea of planting date effects on relative yield potential. The recommended time for planting corn in northern Ohio is April 15 to May 10 and in southern Ohio, April 10 to May 10. In the central Corn Belt, estimated yield loss per day with delayed planting varies from about 0.3% per day early in May to about 1% per day by the end of May (Nielsen, 2019). These yield losses can be attributed to a number of factors including a shorter growing season, greater disease and insect pressure and higher risk of hot, dry conditions during pollination.
Given these planting date effects, do yield losses associated with late plantings translate into lower statewide yields? Not necessarily. Let’s consider some previous growing seasons that were characterized by a “late start” and what impact this had on crop production. For the purposes of this discussion, we will consider “late start” years as those in which 40% or more of the corn acreage was not planted by May 20. Since 1980, there have been significant planting delays associated with wet spring weather in eleven years – 1981, 1983, 1989, 1995, 1996, 2002, 2008, 2009, 2011, 2014 and 2016.

Table 1 shows the percentage of corn acreage planted by May 20 and May 30, the 50% planting date (the date by which 50% of the corn acreage was planted), yield, the state average yield for the previous five years, and the departure from the yield trend in each of those years. Of these eleven years, the greatest delays in crop planting occurred in 2011 when only 19% of the corn acreage was planted by May 30. In five of the eleven years (1981, 1983, 1996, 2002, and 2008) average state yields were markedly lower than the state average yield of the previous five years (In six of the eleven years, average yields were five bushels per acre or more below the yield trend line for Ohio). In one of these years, 2002, the average corn yield dropped to 89 bushels per acre (nearly comparable to the record low of 86 bushels per acre for the major drought year of 1988). However, in six of the eleven years, yields were similar or higher than the statewide average yield of the previous five years, and in one of these years, 2014, a record high corn yield, 176 per acre, was achieved.

In 2017, 73% of the corn crop was planted by May 20 (which does not categorize 2017 as having a “late start”). However, field agronomists and county ag extension educators estimated that as much as 40% or more of the corn planted in late April of 2017 was replanted in parts of Ohio due to excessive soil moisture, freezing temperatures and frosts, fungal seed decay and seedling rots, and soil crusting. (NASS does not report replanted corn.) Nevertheless, the yield in 2017 was a record 177 bushels per acre, 16 bushels above the yield trend.
Table 1. Performance of Ohio’s “Late” Planted Corn Crop – Yield

<table>
<thead>
<tr>
<th>Year</th>
<th>May 20</th>
<th>May 30</th>
<th>50% Planting Date</th>
<th>Yield (Bu/A)</th>
<th>Avg. Yield of Previous 5 Years</th>
<th>Departure from Yield Trend (Bu/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>30</td>
<td>55</td>
<td>May 26</td>
<td>96</td>
<td>108</td>
<td>-10</td>
</tr>
<tr>
<td>1983</td>
<td>45</td>
<td>65</td>
<td>May 22</td>
<td>80</td>
<td>109</td>
<td>-29</td>
</tr>
<tr>
<td>1989</td>
<td>22</td>
<td>40</td>
<td>June 4</td>
<td>118</td>
<td>116</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>60</td>
<td>77</td>
<td>May 19</td>
<td>121</td>
<td>122</td>
<td>-6</td>
</tr>
<tr>
<td>1996</td>
<td>10</td>
<td>54</td>
<td>June 1</td>
<td>111</td>
<td>122</td>
<td>-17</td>
</tr>
<tr>
<td>2002</td>
<td>22</td>
<td>58</td>
<td>May 28</td>
<td>89</td>
<td>138</td>
<td>-48</td>
</tr>
<tr>
<td>2008</td>
<td>50</td>
<td>66</td>
<td>May 20</td>
<td>131</td>
<td>153</td>
<td>-14</td>
</tr>
<tr>
<td>2009</td>
<td>42</td>
<td>95</td>
<td>May 22</td>
<td>171</td>
<td>149</td>
<td>24</td>
</tr>
<tr>
<td>2011</td>
<td>10</td>
<td>19</td>
<td>June 5</td>
<td>153</td>
<td>153</td>
<td>2</td>
</tr>
<tr>
<td>2014</td>
<td>50</td>
<td>85</td>
<td>May 20</td>
<td>176</td>
<td>156</td>
<td>20</td>
</tr>
<tr>
<td>2016</td>
<td>50</td>
<td>84</td>
<td>May 20</td>
<td>159</td>
<td>155</td>
<td>0</td>
</tr>
</tbody>
</table>

Data Source: National Agricultural Statistics Service USDA/NASS (http://www.nass.usda.gov/)

This comparison of statewide average corn yields from past years (Table 1) indicates that lower grain yields are not a certainty with late plantings. While delayed planting may cause yield loss relative to early planting, planting date is just one of many factors that influence corn yield. Figure 1 shows grain yields associated with dates by which 50% of the corn acreage was planted in Ohio from
1980 to 2018 and it does not suggest a strong relationship between planting date and yield. There are other factors that are of greater importance than planting date in determining grain yield. Weather conditions (rainfall and temperature) in July and August are probably the most important yield determining factors. Favorable weather conditions subsequent to planting may result in late planted crops producing above average yields as was case in 2009 and 2014. However, if late planted crops experience severe moisture stress during pollination and grainfill, then crop yields may be significantly lower than average, with 2002 being the most notable example.

Figure 1. Corn yields associated with 50% planting dates, Ohio, 1980-2018.

Data Source: National Agricultural Statistics Service USDA/NASS

(http://www.nass.usda.gov/)

Manure Sampling for Nutrient Analysis
By: Rory Lewandowski, OSU Extension Educator, Wayne County
Source: http://u.osu.edu/beef/2019/05/01/manure-sampling-for-nutrient-analysis/

Applying livestock manure based on nutrient content is one factor involved in using manure more effectively. There are two main challenges to sampling manure for a nutrient analysis; determining when to sample and then collecting a representative sample. Ideally, a manure sample is submitted before application and the results are used in calculating the field application rate. In practice, this is difficult especially for liquid manure systems that require agitation before application. In reality, manure is easiest to sample at the time of

Northeast Ohio Agriculture
application, when it is being loaded and hauled to the field. The main disadvantage is that the results are not available to guide the present application. However, manure nutrient values typically remain fairly consistent and constant within a farm, provided the livestock production system does not change significantly between years. In this case, the analysis results can serve to guide future applications. Annual manure sampling across manure types will allow the farm to establish baseline nutrient values.

The second challenge is collecting a representative sample to send to the lab. The small sample sent in to the lab must accurately represent many tons of manure in a solid system or thousands of gallons of manure in a liquid system. In order to accurately represent the quantity of manure being applied it may be necessary to collect several different samples throughout the hauling and application period. Manure sampling guidelines are similar to recommendations for soil and forage sampling. Take several subsamples, combine them together, mix and take a composite sample to send to the lab. Typically, samples are sent to the lab in either plastic bottles (liquid) or one-gallon heavy-duty zip-lock bags. Often labs will provide the containers. The next question is how is the sample to be collected? What is the sampling procedure and what tools are needed?

For solid manure systems, sample while the spreader is being loaded or when the manure is being spread in the field. Collect samples that represent the beginning, middle and end of the process. If sampling during loading, use a plastic bucket to collect a representative sample of what is going into the spreader. Try to collect at least five samples (more is better) during the application process. As each bucket is collected, empty it on to a tarp or a clean surface. Mix all the samples together thoroughly and take a subsample from the composite mix that will be sent to the lab. To sample during spreading, lay out a tarp or sheet of heavy plastic in the field. Collect the manure from the tarp after the spreader has passed over or by it and place the manure in a bucket. Repeat this for at least five loads. Once again, mix the different samples together and then collect a representative subsample from the composite mix to send to the lab.

In liquid manure systems, the pit or lagoon must be agitated to get a uniform sample. Depending upon the size of the pit or lagoon, the agitation equipment, and the objective of the manure application, the agitation process can take several hours or even the better part of an entire day. Without adequate agitation, nutrients are stratified. This has implications for both field application rates and sample results. Sampling directly from the storage structure is usually more difficult and yields more variable nutrient analysis results than when sampling directly during loading into the spreader. UMass Extension has a publication entitled “Sampling Dairy Manure” that describes how to make a PVC sampling probe that can be used to sample directly from manure lagoons. The key is to sample from multiple locations around the lagoon and to the full depth of the lagoon. Mix those subsamples in a bucket and collect a representative sample to send to the lab.
Sampling during loading is similar to the procedure for solid manure. Collect at least five samples during the process of loading the spreader. Save these samples in a separate bucket and when finished collecting samples, mix thoroughly and get a representative sample to send to the lab. For liquid samples, if the sampling process is going to occur over a period of hours, keep the subsamples on ice to prevent ammonia losses. To sample during spreading for surface application spreaders, place buckets around the field to collect samples. Place buckets to collect samples from multiple spreader loads. Collect samples after each load, keep them on ice to prevent ammonia loss, combine samples, mix thoroughly and get a representative sample to send to the lab. Manure sampling requires some forethought and effort to get a reliable nutrient analysis, but is an important component of a nutrient management plan.

EDITOR’s NOTE: Once the manure nutrient analysis has been completed, properly calibrating the manure spreader can be accomplished. Learn how in this article, Manure Spreader Calibration.

Healing the Mess: Early Season Pasture Management

By: Chris Penrose
Source: http://u.osu.edu/beef/2019/05/01/healing-the-mess-early-season-pasture-management/

For those with pastured livestock, this past winter is one we would like to forget, but damage done is preventing that from occurring. Many farmers talked about the loss of livestock due to the wet weather and mud. To make matters worse, more hay had to be fed to deal with the additional stress on animals from the muddy conditions. The result was animals in a lower body condition and fields in a mess from livestock, feeding hay in the fields, and equipment trying to get hay to livestock.

Damage to fields was worse than most can remember. What can we do to fix the problem? We can start off with these two options: doing nothing or working the ground and re-seeding. Doing nothing may not seem to be the best option but if the area was not damaged too bad, it may heal itself. I noticed in late March some areas where I had bale rings, grass was starting to grow where the bale was located. Where the cattle stood, it was bare and not rutted too much. In a situation like that, you may be able to take a “wait and see” approach. Some grazers have fed in a concentrated area with the understanding that that part of the field will be out of production for the year and will be back in production the next year. In either one of these scenarios, monitor closely for undesirable weed growth and mow or treat as needed.

If the area needs to be re-seeded, you have options on how to repair the ground and what to plant. In an area that is not in too bad of shape, on a good year, one may be able to get out in March and level up the ground and possibly frost seed but it is too late.
for that this year. Once the ground is leveled, no-till is a good option. If you choose to work the ground, the better prepared the seed bed is, the greater the chances are of seed germination. The best option is to have a firm seed bed with good seed to soil contact. Any other lack of ground preparation reduces chances of germination. One option that I have seen work with some success is to level the ground with a loader or a blade and when you are about finished, back blade it and leave a little loose soil on the surface then broadcast the seed. The key to success with this option is to apply the seed immediately after back blading and before a rain or a dew where the soil will crust over. The addition of some mulch and fertilizer will help.

The next question is what to seed. Do you plant an annual or a perennial? Do you focus more on the needs of the animals or the needs of the ground? If you feed in the same location every year and want a rapid establishment, an annual grass may be an option. I tend to lean more towards planting a perennial with the idea that maybe I will not have to re-seed every year. One perennial grass that works well is Kentucky 31 (endophyte infected) fescue. The endophyte in the fescue allows it to be a more durable grass that can withstand more damage than other grasses. However, the endophyte in the grass can cause health issues for livestock. The good news is there are newer “novel endophyte” fescue varieties that have the persistence of infected fescue but none of the health issues with livestock.

When choosing what to plant, I really subscribe to the recommendation that Dr. Mark Sulc (OSU Forage Specialist) uses: first, pick a primary grass, then a primary legume. If desired, pick a secondary grass then a secondary legume. There are also pasture mixes available at seed dealers and feed stores that may fit your needs as well. If you had a chance to frost seed areas, especially clover, that were damaged during the winter and they are starting to grow, you may consider a light grazing of the pre-existing grass to allow for more sunlight and less competition for the new growth. You will lose some new seedings from the animal movements but if done right, the reduced competition will provide more growth of the new plants.
Another key to a successful stand is to wait to graze or mow. When to graze depends on stand vigor and weather conditions. Watch for weed competition. In spring planted fields, it is typically better to mow before you graze. If you graze first, make sure the ground is firm and keep animals in for no more than a week (less will be better). Keep in mind that grasses tend to establish slower than alfalfa.

Are there things we can do to reduce damage to fields in upcoming years? I think one of the least expensive and time saving things we can do is to have our animals graze as much as possible. Stockpiled fields of grass will reduce the amount of hay we need to make and to feed. If you only had to feed for three months, would that reduce the potential damage to your fields and reduce that amount of hay that needs to be made? How about if you could cut it down to 60 days? Would having some square bales of hay available to feed if the ground gets too wet to support a tractor? If you could place some round bales out in the field in the fall or when the ground is frozen in the winter and use electric fence to ration out the bales, would that reduce mud issues?

Finally, when all else fails, I am convinced that a heavy use pad is the way to go. I have seen several of these that are designed so a bale can be taken from the barn, to the feeding area on the pad, and never go into the field or on the pad. The livestock are out of the mud and damage is reduced. There is a cost involved and manure to haul, but in situations like we experienced this year, it may be money well spent.

Boardman High School takes 1st place at Envirothon competition

On Thursday, April 25, 2019, the Area 2 Envirothon competition was held at the Beaumont Scout Reservation in Rock Creek, Ohio. Forty-five teams of high school students from 17 different counties competed by taking tests in Soils, Forestry, Wildlife, Aquatics and a Current Environmental Issue.

We are proud to announce that the Boardman Hawks team from Boardman High School took first place! They also won the high score in both the Aquatics and Wildlife categories. Here are the complete results of the top four teams:

1. Boardman Hawks – Boardman High School (Mahoning)
2. Perry High School – Perry High School (Lake)
3. Chardon Red – Chardon High School (Geauga)
4. Amory Lovins Appreciation Society – Brecksville-Broadview Heights High School (Cuyahoga)

Envirothon is designed to stimulate, reinforce and enhance interest in the environment and natural resources among high school students. Five Area Envirothons are conducted around Ohio each spring. The top four from each area competition go onto the State Envirothon held at Franciscan University of Steubenville on June 10-11, 2019.
The Area 2 Envirothon was hosted by the Ashtabula and Trumbull Soil & Water Conservation Districts with the generous sponsorship of 35 agencies, companies, and individuals. For more information on Envirothon, visit http://www.ashtabulaswcd.org/Education/Envirothon 2019/Envirothon 2019.html.

Spring 2019 Beef Twilight Tour to be Held May 30th

Join the Ashtabula County Cattleman’s association for this year's Spring Beef Twilight Tour on May 30th in Dorset, Ohio. The Paul Farm has been in beef production in Dorset since the 1970’s. The tour will showcase a facility that features a Murray Grey cow-calf operation and a rotational pasture system. Guest will enjoy information from several entities including: Hickory Nut Fencing, USDA NRCS, and Fowler Seed Marketing.

All beef producers and industry individuals are invited. No reservations are needed. Don’t miss this opportunity to visit these outstanding operations.

A Free Beef Hamburger and Hotdog Meal will be served at the conclusion of the program, compliments of Cherry Valley Slaughtering & Processing.

Location: 4564 Hays Rd. Dorset, OH 44032
Cost: Free
Contact information: Call Andrew Holden at 440-576-9008 or Email Holden.155@osu
Upcoming Events

Spring 2019 Beef Twilight Tour
May 30th

Skip the Landfill: Composting 101
June 3rd – Ashtabula OSUE

Untold Stories of the Garden with Danae Wolfe
June 24th - Ashtabula Co. District Library - FREE

Lee Beers
Trumbull County Extension Office
520 West Main Street
Cortland, OH 44410
330-638-6783
beers.66@osu.edu
trumbull.osu.edu

Andrew Holden
Ashtabula County Extension Office
39 Wall Street
Jefferson, OH 44047
440-576-9008
holden.155@osu.edu
ashtabula.osu.edu

CFAES provides research and related educational programs to clientele on a nondiscriminatory basis. For more information: http://go.osu.edu/cfaesdiversity.
Thursday, May 30th, 6:30 P.M.

The Ashtabula County Cattleman’s Association and the Ohio State University Extension invite you to join us for this year’s Spring Beef Twilight Tour on May 30th in Dorset, Ohio. The Paul Farm has been in beef production in Dorset since the 1970’s. The tour will showcase a facility that features a Murray Grey cow-calf operation and a rotational pasture system. Guest will enjoy information from several entities including: Hickory Nut Fencing, USDA NRCS, and Fowler Seed Marketing.

All beef producers and industry individuals are invited. No reservations are needed. Don’t miss this opportunity to visit this outstanding operations. See you there!

A Free Beef Hamburger and Hotdog Meal will be served at the conclusion of the program, compliments of Cherry Valley Slaughtering & Processing.

Thank you to Joe and Barb Paul for hosting this event!

Location: 4564 Hays Rd. Dorset, OH 44032
Cost: Free Contact information: Call Andrew Holden at 440-576-9008 or Email Holden.155@osu.edu

Sponsored by the Ashtabula County Cattleman’s Association
Skip the Landfill:
Composting 101

Monday, June 3rd 2019, 6:00 – 7:30 P.M.

RSVP today to come learn about how you can take the food and lawn waste you usually throw away, and turn it into beneficial, money saving compost. The benefits of composting include: reducing waste that ends up in the county landfill, improve soil quality, and supplying valuable soil nutrients and use less fertilizer.

Come learn how to make compost work for you, different types of compost systems (Including composting with worms), and solutions to any of your compost issues. Enjoy presentations from Dan Brown, Ashtabula County Local Foods Coordinator, Suzanne Westlake from Ashtabula Soil and Water Conservation District, and Andrew Holden, Ashtabula County ANR Educator.

Location: Ashtabula County Ohio State Extension Office – Jefferson Ohio
Contact: Contact Andrew Holden at Holden.155@osu.edu or call 440-576-9008

Cost: $10
Cost: $10.00 RSVP by May 31st
Checks payable to OSU Extension Ashtabula

Details: The benefits of composting include: reducing waste that ends up in the county landfill, improve soil quality, and supplying valuable soil nutrients and use less fertilizer.

Come learn how to make compost work for you, different types of compost systems (Including composting with worms), and solutions to any of your compost issues. Enjoy presentations from Dan Brown, Ashtabula County Local Foods Coordinator, Suzanne Westlake from Ashtabula Soil and Water Conservation District, and Andrew Holden, Ashtabula County ANR Educator.

More information: Please contact Andrew Holden at Holden.155@osu.edu or 440-576-9008

Ashtabula County Extension Office
39 Wall Street, Jefferson, OH 44047
Downstairs Meeting Room

Please register by May 31st by sending in a completed form to the Ashtabula County Extension office at: 39 Wall Street, Jefferson, OH 44047 or calling 440-576-9008

Name: __
Address: __
Phone: __________________________ Email: ____________

Pay (please circle): AT DOOR / MAIL-IN

https://go.osu.edu/Cqp5

CFAES provides research and related educational programs to clientele on a nondiscriminatory basis. For more information, visit cfaesdiversity.osu.edu. For an accessible format of this publication, visit cfaes.osu.edu/accessibility.
Untold Stories of the Garden with Danae Wolfe

MONDAY, JUNE 24TH, 2019 6:00 - 7:30 P.M.

From steadfast survival and reproduction to pollination and even charming tales of maternal care, insects and spiders keep our gardens buzzing with adventure. Join bug and botanical portrait photographer, Danae Wolfe, on a journey through your garden to discover the stories of insects and spiders. Uncover the fascinating tales of the curious creatures among our plants and explore how to capture incredible images of bugs on any budget.

Danae Wolfe is the educational technology specialist for Ohio State University Extension where she teaches faculty and staff about digital engagement and innovation. In her free time, she is a macro photographer focused on insect and spider conservation and storytelling.

Location: 4335 Park Ave, Ashtabula, OH 44004
Cost: FREE

Contact information: Call Ashtabula Extension Office at 440-576-9008 or email Holden.155@osu.edu

Co-Sponsored by the Ashtabula County District Library and Ashtabula County Master Gardeners

THE OHIO STATE UNIVERSITY
COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

CFAES provides research and related educational programs to clientele on a nondiscriminatory basis. For more information, visit cfaesdiversity.osu.edu. For an accessible format of this publication, visit cfaes.osu.edu/accessibility.