Hello Northeast Ohio Counties!

Our offices are currently closed, but we are still here to answer any questions you have. Please email us or call the office and we will get you the information you’re looking for.

We are all working from home and are newsletter photos are limited to what we find around our houses. We really want to see what is happening in NE Ohio! If you have a picture that you want to share please send it to beers.66@osu.edu and it may end up on the front page of our newsletter. Let’s see that field work, livestock, gardens, equipment repairs, or anything agriculturally related!

Stay safe and healthy!

Bloodroot (Sanguinaria canadensis) are starting to bloom!

In This Issue:
- Freeze/ Frost Potential in Ohio
- Get Ready to Plant
- On Farm Biosecurity to Keep Us and Employees Safe
- Join the Farm Office Team for Online Office Hours
- How to Anticipate Pests from Cover Crops Migrating into Cash Crops
- Ashtabula County: Local Foods Report April 7th, 2020
- Upcoming Events

Hello Northeast Ohio Counties!
Freeze / Frost Potential in Ohio

By: Aaron Wilson, Jim Jasinski

Now that the calendar has turned to April and warmer temperatures are becoming more frequent, those with horticultural interests are eager for the start of the growing season. But April can be a fickle month, with both warm spring rains and lingering cold nights that bring hard freezes and frost and occasionally, even a late-season snowfall. The threat of spring cold temperatures on horticultural production and operations (seeding, transplanting and flowering/fruit) can be greater following early season warmth, where phenological conditions may be advanced for this time of year.

Winter (December 2019 – February 2020) averaged 2-8°F above average compared to the climatological normal (1981-2010; Fig. 1). This warmth continued throughout March as well, with temperatures 4-8°F (west to east) above average. As a result, growing degree day accumulations range from the mid-60s (Ashtabula County) to nearly 200 (Lawrence County) after the first week of April 2020, with our landscapes, fruit trees, and gardening equipment coming to life.

![Average Temperature (°F): Departure from 1981-2010 Normals](chart.png)

Figure 1: Departure from average (1981-2010) temperatures for December 2019 – February 2020. Figure generated by the Midwest Regional Climate Center (http://mrcc.illinois.edu).

Frost and Freeze Potential

What is Ohio’s typical expectations regarding freeze (≤32°F) conditions in April and May? On average, locations throughout Ohio experience their last seasonal freeze from mid-April (southern Ohio) through mid-May (northeastern Ohio). Timing varies year to year and across Ohio. For a regional analysis, we have...
selected 8 locations from around Ohio to compare typical last seasonal freeze conditions (Fig. 2).

Figure 2: Selected locations around Ohio for freeze potential analysis displayed in

Fig. 3.
Figure 3 shows the probability of experiencing a later freeze in Spring than indicating by the line graphs. All locations show probability based on the most recent 30-year period (1990-2019) except for 7-Lancaster (1996-2019). For each location, five temperatures are displayed (20°F-purple, 24°F-blue, 28°F-green, 32°F-yellow, and 36°F-red). For the purposes of this article we will focus on 32°F and 28°F (considered a hard/killing freeze). The bottom (x-axis) shows the probability that each of these temperatures will occur after a given date (indicated by the left or y-axis).

Figure 3: Probability of a later freeze in the spring for various locations (Fig. 2) around Ohio. Graphs generated by the Midwest Regional Climate Center (http://mrcc.illinois.edu).

Let’s run through an example of how to use Figure 3. For 1-Wauseon, we see that there is a 50% climatological probability of experiencing a 32°F temperature (yellow) after April 27, and this probability decreases to 20% by May 10. The colder, more damaging temperature of 28°F occurs 50% of the time after April 16, with only a 20% chance of seeing 28°F after April 27. For a southern location like 8-Marietta, these dates occur earlier in the season. Here, there is a 50% climatological probability of experiencing a 32°F temperature after April 18 with 28°F occurring 50% of the time after April 2.

Besides latitudinal (north of south) position, what other factors can influence springtime minimum temperatures? Colder air is more dense than warmer air, meaning it wants to remain close to the ground and will flow over the terrain like a fluid to settle in areas of lower elevation. If your location is in a valley or low-lying area, the climatological dates will likely be shifted later to account for more freeze potential later in the spring. Water bodies are typically colder than the surrounding land areas in spring which may keep temperatures in the immediate vicinity a little colder. For 2020, water and soil temperatures are above average, so they are likely to have a moderating impact this year. Cloud cover and higher humidity in the spring will keep air temperatures warmer due to their absorption of terrestrial (from the surface) radiational effects. Finally, late season snowfall combined with clearing skies overnight can also cause the surface to cool rapidly and lead to damaging freeze potential as well. All of these factors should be considered when comparing your location to those selected in Fig. 3.

April 2020 Outlook

At the time of this writing, the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (https://www.cpc.ncep.noaa.gov/) outlook for April 10-20, 2020 calls for increased probability of seeing below average
(unseasonably cold air) settling into the Upper Great Plain, Midwest, and Ohio Valley (Fig. 4) with a moderate risk of experiencing much below average minimum (nighttime) temperatures. Given the warm start to the year and current phenological conditions, those with horticultural assets should monitor this freeze potential closely and be prepared to mitigate when necessary to avoid losses. For a weekly climate update, please visit the State Climate Office of Ohio's website (https://climate.osu.edu)

Get Ready to Plant

By: Mark Sulc, Jason Hartschuh, CCA, Rory Lewandowski, CCA

Source: https://agcrops.osu.edu/newsletter/corn-newsletter/2020-08/get-ready-plant

The weather outlook for our spring planting season is not encouraging, as it is expected to be wetter than normal again, although hopefully not as bad as 2019. The purpose of this article is to stimulate our planning and preparation now so we will be ready to take full advantage of what are expected to be very short and few windows of opportunity to be in the fields this spring. In this article, we focus on planting forage crops, but the process and many of the ideas will pertain to other spring field work activities.

Begin your planning by mentally walking through what you will do the day you plant. It might even help jog your thoughts to physically “walk through” those activities. List every single activity needed to get the whole job done. Then ask the question, “Which of these activities can I do today, or what can I do now that will make that activity go smoothly and efficiently on planting day?” Then start doing everything that is possible to do ahead of time, so that no time is wasted on the day you can get in the field. Below are some examples.

1. Make sure your fuel supply is full and fill the tanks of all tractors that will be used. Service all tractors.

2. Get any needed fertilizer on hand or order it to be spread as soon as the field is fit (hopefully you pulled a soil sample last fall, and if not, do it now and send to the lab).

3. Calibrate the fertilizer spreader.

4. Buy the seed (including any companion crops you will use) and have it on the farm, if not done so already. Also buy inoculant if seed is not pre-inoculated.
5. Service all tillage equipment that will be used and have it ready to go, including having it hooked up to the tractor if possible.

6. Get the drill/planter out and service it so it is ready to go. Arrange for equipment you will rent or borrow.

7. Calibrate the drill to the desired seeding rate using the seed that will be planted and then don’t touch the drill settings. Watch this video about calibrating drills: https://forages.osu.edu/video/drill-calibration?width=657px&height=460px&inline=true#colorbox-inline-239078345.

8. Check seeding depth and adjust to the first crop you will be planting. Seeding depth will have to be fine-tuned to field conditions on the day of planting. If this is the first time using this planter or planter/tractor combination check for machine levelness.

9. If contracting the planting, get agreements and expectations in place now.

10. Finally list the field work tasks that you need to do this spring when the weather and soils are fit, then prioritize them. Think through the tough choices you might have to make between competing activities. Think through contingency plans if each specific activity cannot be completed in a timely manner, or if it can’t get done at all this spring because of wet weather.

This last #10 item is the hardest. When the windows are opportunity are shorter than the list of work that can be accomplished, tough choices will have to be made.

For example, how do you prioritize planting forages versus manure spreading in the spring? It will likely depend on the specific situation. If the manure is stored in a lagoon, then when the lagoon is full, the manure must be pumped out and spread on the field rather than planting forages, so the forage planting might have to wait. But planting forages too late in the spring brings a lot of risk to stand establishment and low yields (maybe only one cutting). In that case it might be better to plant a summer annual for a couple cuttings, then kill it and plant the perennial forages in August. But if the manure is dry pack, perhaps it is better to take those first days of field work to plant the perennial forage and spread the manure later. Thinking through these choices and establishing a game plan will help you be more efficient and not waste time in indecision or making a less than optimal choice for the situation.

We surely all hope for a better spring than in 2019, but climatologists are forecasting another challenging planting season. So prepare as much as possible now so you can make good decisions when the time comes. You don’t want to waste hours of potential field planting doing stuff you can do today. Try to be completely ready, as if you will be planting tomorrow morning…which we hope will be true one day very soon!
Join the Farm Office Team for Online Office Hours
Source: https://farmoffice.osu.edu/news/join-farm-office-team-online-office-hours

The Farm Office is Open! Each week, the Farm Office Team will offer live office hours to update you on current issues affecting the farm economy. Join our experts for quick presentations and plenty of time for you to ask questions. We're here to help you run your farm office! Go to https://go.odu.edu/farmofficelive to register.

On Farm Biosecurity to Keep Us and Employees Safe
By: Jason Hartschuh, CCA, Dr. Gustavo Schuenemann
Source: https://agcrops.osu.edu/newsletter/corn-newsletter/2020-08/farm-biosecurity-keep-us-and-employees-safe

Agriculture is no stranger to contagious disease. Drawing on sanitation experiences from outbreaks, such as avian and swine influenza or the 2001 outbreak of foot and mouth disease in the United Kingdom in 2001, can help us through the current pandemic. Looking back at many of these experiences, we know that we can pull together maybe from a distance and get through the current human viral outbreak and keep our farms running. Unless they are sick, farmers don’t usually tell their workers to stay home, but through keeping social distance on the farm and increasing many of our tried and true disinfection protocols, we can all stay healthy. One big difference is that instead of disinfecting our boots, we need to disinfect all surfaces around us and all our employees touch. This may also be a good time to review the visitation requirements you have on your farm. To keep you and your service providers safe, be sure to follow all their company requests and keep your distance when they come onto the farm or respect their calling instead of coming for a visit.

This first thing that came to mind looking around our farm and the feed tractor is the need to do a deep cleaning before any disinfectant can work. Most disinfectants won’t work if the surface has any organic material present. I often remember one professor at OSU saying “you can’t Disinfect shit”. As a first step, wear a pair of disposable gloves and scrub all surfaces that are touched so that you can use a disinfectant on them. Once all surfaces are clean, filling a one-gallon hand sprayer with disinfectant to spray all surfaces down at the end of each shift can be helpful. If this sprayer was previously used for pesticides, be sure to triple rinse it with a

Northeast Ohio Agriculture
tank cleaning agent or ammonia. The EPA has many different disinfectant options available: https://www.epa.gov/pesticide-registration/list-n-disinfectants-use-again.... Concentration is very important, but a few common active ingredients on this list are sodium hypochlorite, sodium chlorite, ethanol, quaternary ammonia, and hydrogen peroxide. If using a bleach solution, the goal is a minimum of 1000 ppm sodium hypochlorite or for household bleach, 1/3 cup of bleach per gallon of water.

High Touch Surfaces
A few high touch surfaces to consider are tables, hard-backed chairs, doorknobs, light switches, power switches for large motors, phones, tablets, touch screens, keyboards, handles, desks, toilets, sinks, cabinet handles, mailbox handle, shop hand tools, welders, all tractor controls, tractor seats, hand rails, high touch areas in the barn, rattle paddles, all controls in milking parlor, and anything else people may touch.

Porous Surfaces on the Farm
For porous surfaces, such as tractor seats, it may be beneficial to wrap them in plastic to allow for better cleaning. Once wrapped in plastic, these surfaces can be treated the same as all other high touch areas. Vinyl seats should be treated as a hard surface, high touch.

Electronics
Discourage farm workers from using their personal electronic devices while at the farm. If you have an electronics cleaner, use that; otherwise, keyboards, mouse, and touch screens can be cleaned with at least a 70% alcohol disinfectant spray or wipe. Plastic covers may be available for keyboards and touch screens.

Sharing Objects
Be cautious when handling and sharing objects (e.g., pens, clipboard, etc.) that are used as part of your daily routine. Many objects are often used by multiple employees during the same or different shifts. Hand-washing, disinfection, and wearing disposable gloves is recommended for all employees on the farm. If possible, provide additional supplies of these items that are typically shared and assign them to each employee, so they no longer must share them.

Additional considerations:
- Have employees always wear gloves.
- Each person should have their own welding gloves and other personal protective equipment (PPE)
- When possible, assign a tractor to a single person.
- Maintain the 6-foot social distance when having a conversation; stay a cow length apart.
- Assign individual projects when safely possible (e.g., one shop project per person).
- Put hand sanitizer with at least 60% alcohol in all machinery and work areas.

Resources:

Questions Regarding the Novel Coronavirus (Covid-19) on Farms with Employees: https://wayne.osu.edu/sites/wayne/files/imce/COVID-19%20Farm%20Employees%20FAQ%27s%20English.pdf

Disinfection in On-Farm Biosecurity Procedures: https://ohioline.osu.edu/factsheet/vme-8

How to Anticipate Pests from Cover Crops Migrating into Cash Crops

By Susan Winsor

Cover crops have been proven to reduce soil erosion and weeds and to improve soil structure, moisture drainage, and storage. On the negative side of the ledger, they can be attractive environments for pests to lay eggs or overwinter. Soybeans are more vulnerable to this, university entomologists agree, especially for stink bugs and slugs. Because slugs aren’t insects, but mollusks, their control measures differ from insects.

Of course, details vary greatly by geography and tillage system. No-till and conservation tillage systems can be more favorable environments for cover-crop-dwelling insects than bare soil or conventionally tilled fields. Similarly, incompletely closed planter furrows can be a virtual pest highway in cash crops because pests can access seed and seedling growth points, says Virginia Tech Extension Entomologist Sally Taylor.

Slugs are among the most challenging pests faced by Mid-Atlantic no-till growers. Source: Penn State.
Taylor worked on a research project that found a 50% corn yield hit (65 vs. 130 bu/ac) from insect pests/stink bugs moving from the preceding 10-species cover crop mix (oats, triticale, rye, forage radish, rapeseed, phacelia, crimson clover, winter pea, and hairy vetch) into corn. It appears insect feeding caused excess corn tillering, lowering yield, says study lead Mark Reiter, Virginia Tech Assistant Professor, Soils and Nutrient Management. The research project is a long-term rotation with 12 different tillage and cover crop treatments. These results occurred 2015; the same effect was not measured in 2016.

“This (yield hit from cover-crop-based insects) has been observed before with winter peas, but stink bugs have a broad host range, including wheat and barley (common in covers), so there’s lots of potential for damage,” explains Scott Stewart, University of Tennessee IPM Extension Specialist.

General Tips to Reduce Pest Problems
Although more research is under way to determine how and when cover crop insects damage cash crops, university entomologists have these pointers to reduce these pest problems:

Select cover crops from families other than your cash crops. Taylor and Stewart both advise avoiding legume cover crops like vetch, clover, and winter peas in front of soybeans. “The pea weevil, for example, can gnaw seedling soybean plants to the ground behind a cover crop of Austrian winter pea or vetch,” Taylor says. She’s also observed threecornered alfalfa hoppers damage soybean seedlings when planting into a winter pea cover crop (hosts for this insect). Stewart adds, “Southern corn rootworm isn’t typically a soybean pest, but we’ve seen serious damage when there’s a legume cover crop going into soybeans, particularly when the burndown was applied late.”

Allow at least three to four weeks between cover crop burndown and seeding cash crops. Stewart and Purdue Entomologist Christian Krupke recommend avoiding a green bridge that allows pests to move from weeds or cover crops directly into the crop. “Planting into green vegetation is asking for it, and you need to take steps to mitigate problems when that occurs,” Stewart says.

John Tooker, Penn State Entomology Extension Specialist, disagrees, in the case of slugs. His research (http://bit.ly/slugs_PA) found that “planting green” can provide slug
control benefits when IPM is followed. "This means that insecticides should not be used preventatively," Tooker says. "Insecticidal seed treatments and insecticide broadcast applications can exacerbate slug populations because these insecticides do not kill slugs, which are mollusks, not insects. Rather, insecticides limit populations of predators, like ground beetles, that can eat slugs, limiting their populations."

Stewart says when burndown herbicides are applied too late or are ineffective, spider mites can jump from vegetative cover, or winter weeds like henbit, into a crop. If insect risk is high, he recommends a broadcast insecticide spray when terminating the cover crop.

"Pyrethroid insecticides are generally effective and inexpensive options that can control cutworms, threecornered alfalfa hoppers, and some other pests, but they will not affect soil larvae or grubs," he says. "Soybean insecticide seed treatments will have a higher potential benefit when planting into green cover crops."
Scout, scout, scout! Economic thresholds have yet to be established in many cases, “but knowing which pests are present in a cover crop and detecting problems quickly in the subsequent cash crop can help you make timely management decisions,” Taylor says.

Move residue away from emerging seedlings with row cleaners or tillage to reduce potential slug and insect habitat.

Transition to cover crops gradually to learn more about insect pests in your locale and perfect this new agronomic system.

The further South you are, the more pest risk there is, Taylor says, because pests, like cutworm, must migrate from southern states each season.

Soybeans Most Vulnerable
Soybeans are vulnerable to pests from cover crops for several reasons. Their growing point is aboveground, and pests destroying the seedlings’ two cotyledons can kill the plants. When grown without seed treatments, soybeans can prove more vulnerable to insect pests migrating from cover crops. This scenario may favor soybean seed treatments, university entomologists say.

However, Penn State University research shows that insecticidal soybean seed treatments offer no protection against slugs and may actually worsen slug problems. Results vary geographically, but they are often not needed in the absence of cover-crop-born insect pests, previous university research shows.

Unlike soybeans, corn’s growing point lies belowground, protected until the V6 stage from insect pests, which may migrate from cover crops. One exception to this is an incompletely closed planting furrow/faulty press wheels, which can allow pests to penetrate that belowground corn growing point, Taylor says.

Corn is also generally less vulnerable to cover-crop-hosted pests because its seed treatments protect against some cover crop pests, like stink bugs, Taylor says. And, Bt traits protect against some caterpillar/Lepidoptera early-season corn feeding that may come from cover crops.
A soybean–wheat–corn sequence can be especially prone to stink bug damage, according to research out of Kentucky and adjacent states. Stink bug population can build up in soybeans during pod fill. Wheat cover crops provide an attractive early spring host for the insects, and then they feed on emerging corn. Stink bugs may overwinter in wheat stubble, or they may leave for overwintering sites and return in the spring, according to the University of Kentucky Extension.

Generally, corn seed treatments protect against early-season, soil-dwelling insect pests like click beetle larvae (also known as wireworms) in corn, Stewart says.

Stink Bug Pointers

Little is known about stink bugs' true impact on corn, says Purdue's Krupke. Several stink bug species may attack corn. Overwintered adults move to corn when small grains mature or when cover crops or weeds are treated with herbicides.

"Stink bugs stick their straw-like mouth parts into plant tissue and inject a digestive enzyme," Krupke says. "Plant damage is most evident after approximately V5." Common corn seedling deformities from stink bug feeding are window pane leaf injury, irregular stalk twisting, and tillering/suckers, he says.

Plants will often have round to elongated holes of various sizes in the rapidly expanding leaves, Krupke says.

"The holes are often ringed with yellowed plant tissue, and the edge of the hole is generally transparent. Although these holes may appear to have been caused by a chewing insect, a closer examination reveals that they are caused by a piercing of the leaf while it was small and rolled up in the stalk or whorl. The holes get larger as the leaf expands." The holes are similar to those caused by billbugs; however, leaf tissue has not been removed by chewing on the leaf, Krupke says.

Late whorl-stage plants are fed on below the leaf through the leaf sheath, according to Krupke. This feeding has been reported to sometimes cause injury to the leaf sheath and developing ear behind the sheath. As the ears emerge, the bugs shift their feeding activity to the lower outside portion of the ear. Feeding there may abort individual kernels. Since feeding occurs on only one side of the ear, the ear could curve away from the stalk as it grows. Discoloration is usually apparent on the shuck surrounding the ear.

"This type of ear damage begins mainly in late July through August. Soybean damage appears to be limited mainly to field edges in most cases," Krupke says. "If brown stink bugs or their damage are found in corn, evaluate 20 consecutive plants, beginning with a randomly selected plant in each of five areas of a field." In corn, from emergence to
mid-whorl, record the percentage of damaged plants and note the damage severity: plants with holes in leaves, plant deformity, slits in the stalk, or dying plants.

“Also, determine if the bugs are still present—they are often active and feeding during the daylight hours and easy to see. Note if they are at ground level, on stalks, or in whorls.” In corn, from late whorl through silking, Krupke recommends recording the percentage of plants showing stink bug feeding damage, either on the leaf, ear sheaths, or developing ears.

“A field can be made less attractive to stink bugs by tilling the field, eliminating the plant cover that can harbor them. However, this negates some of conservation tillage’s benefits,” Krupke says.

Slugs
“Slugs are among the most challenging pests faced by Mid-Atlantic no-till growers,” says Penn State’s Tooker.

Slugs can overwinter in cover crops and damage cash crops. They flourish in cover crops’ cool environment, and they’re hard to find when scouting during warmer times of day. They hide by day, so it is not easy to find them then.

“Timely cover crop burndown and tillage are cultural measures to reduce slug populations, Taylor says. “You want fast plant emergence and growth—feeding damage is rarely a concern past corn’s four-leaf stage.

“Their signature when scouting is mysterious narrow or irregular feeding lines on leaves, holes in leaves, or the entire plant is cut off.” To scout, Taylor recommends placing roofing shingles in the field and checking below them early in the day before warmer temperatures.

“Bait is the only effective slug treatment, and it is pretty expensive when used at 10 lb/ac,” Taylor says. “And by the time you know you have a problem, it may be too late to save your stand.”

Gray garden slug eggs commonly occur in small clumps and are mostly laid in autumn but persist until spring when juvenile slugs typically emerge. Eggs can be common in no-till corn or soybean fields, usually found under crop residue. Source: Penn State.
Taylor advises closing the seed furrow at planting and not unnecessarily using insecticides since slugs “flourish in the absence of natural enemies.”

Don’t Ignore IPM Principles
Penn State research has revealed that “neonicotinoids can indirectly increase slug damage to crops by poisoning insects that eat slugs,” Tooker says. This lowers crop yields.

“Our research found that slugs were unaffected by fungicides and by neonicotinoid insecticides, likely because they are mollusks and not insects. But the slugs did transmit the insecticide to the (predatory) ground beetles, impairing or killing more than 60% of the beetles.”

Tooker and his team found that neonicotinoid treatments depressed insect predator activity, thereby relaxing slug predation and reducing soybean densities by 19% and crop yield by 5%. These results also confirm that predatory insects can provide significant slug control.

Kirsten Brichler, a master’s student in Entomology at Virginia Tech, has preliminary data on slug control echoing this—that “broadcast, preplant insecticides not only don’t inhibit slug populations, they actually encourage their growth,” she says.

Brichler scouted more than 3,500 ac and tracked slug numbers on 19 Virginia farms. She is measuring different crop management strategies’ impact on slug damage and three potential slug predators: harvestmen (daddy longlegs), ground beetles, and wolf spiders. “It appears that preplant broadcast-applied insecticides negatively impact harvestmen and ground beetles, two slug predators, allowing slugs to thrive,” she says.

Slugs have set back no-till adoption in her region, Brichler. She’s researching slugs’ response to agronomic practices. “While slug damage might not be the Number 1 problem for all my local (Virginia) farmers, I think it is the number one thing keeping most of them from switching to no-till,” she says.

Bean Leaf Beetles
Bean leaf beetles can overwinter in clover and broadleaf cover crops before soybeans. They feed on soybean roots, foliage, and pods, and carry the damaging disease bean pod mottle. “But they aren’t any more of a threat as a result of cover crops preceding cash crops,” says University of Tennessee’s Stewart. “Adult bean leaf beetles leave small holes in young plant tissue, feeding primarily on leaf undersides. Adults can defoliate young plants and damage pods. They’re occasionally seen in corn but not at economically damaging levels. The adult is the primary damaging stage.”
Bean leaf beetles have multiple generations each year and overwinter as adults, Purdue’s Krupke says, “They feed vegetative soybean portions early in the season and then switch to green pods.

“Bean leaf beetles scar the pod surface but only occasionally feed through the pod to the developing seed,” Krupke says. “During pod maturation, the remaining protective membrane cracks, leaving an entry hole for moisture and airborne plant pathogens that may cause discolored, moldy, shriveled, or diseased beans.”

Ashtabula County: Local Food Report April 7th, 2020
By Julie Wayman, Local Food Coordinator, Ashtabula County OSU Extension

Every Spring, the Ashtabula Local Food Council, now in partnership with OSU Extension, updates the Ashtabula County Local Food Guide which was first published in 2017. The 2019 version of the Guide can be found online here: https://ashtabula.osu.edu/program-areas/community-development/local-foods

We are currently in the process of updating the Guide for 2020. In the meantime, we want to provide you with resources as to where you can find and buy local food along with updates on any new buying procedures in light of the Covid-19 crisis. This list will be updated to accommodate new information as the season progresses and as local produce becomes more widely available. Every effort will be made to keep this list accurate. Please send updates and corrections to Local Food Coordinator, Julie Wayman, at wayman.31@osu.edu or by calling 440-624-1022.

It is our goal to have the updated Ashtabula County Local Food Guide published online by June 1st. We are excited by this opportunity to promote our local farms and local food. We encourage everyone to consider local farms first when considering where to purchase your food.

Dairy
Mayfield Road Creamery, Orwell
Farm store currently closed but cheeses are available at Moores Heritage Farm Market and Heinen’s

Eggs etc.
Peter’s Creek Farm, Dorset
Available Now: Limited supply of eggs
Coming Soon: Seasonal Vegetables
How to order: Please call (440) 858-9741

BLD Farms, Conneaut
Available Now: Eggs, Maple Syrup
How to order: Email farmmedicoh@gmail.com, Phone 440-812-9921
Herbs
Trillium Center, Conneaut
Available Now: Herbs
Also: Herbalist training, herbal consultations, and herb & food education
How to order: Email leah@trilliumcenter.org, Phone Leah 440-812-9921

Meat
Freeman Farms, Dorset
Available Now: Lean ground beef and roasts in the freezer
How to order: Contact Jean Freeman, Facebook page: Freeman Farms NE Ohio, Email: freemanfarmsohio@gmail.com, Phone: 440-813-1608
Kanicki Cattle Company, Pierpont
Available Now: SOLD OUT-Taking orders for the Fall of 2020
How to Order: Whole, half, and quarter cow available. Email: kanickicattleco@windstream.net, Phone: 440-577-1020

Moores Heritage Farm, Ashtabula Harbor
Available Now: Pastured poultry, pork, and lamb
How to Order: Please watch Facebook page for weekly ordering forms and frequent updates, pick up and delivery available
https://www.facebook.com/MHFarmandMarket
Email: mooresheritagefarm@gmail.com, Phone: 440-725-0282

South Elm Farm, Jefferson Township
Available Now: pastured eggs, pork, and whole broilers
Coming Soon: We will have beef and lamb this fall. We are also selling feeder pigs this summer.
How to Order: Find us on Facebook, Email: southelmfarm@gmail.com, Contact: Michele Szewczyk 507-469-8767, We can deliver to Ashtabula and Trumbull counties, would consider fee for delivery elsewhere. Farm pick up by appointment.

Meat Processors
NaKyrsie Meats, Geneva
Available now: Full inventory of locally raised meats
How to Order: Online ordering available at nkmeat.com/bundles; Store Location: 100 Austin Rd, Geneva, OH 44041; Hours: Mon.-Fri. 10 am - 5:30 pm, Sat. 9 am-1 pm, curbside pick up available

Produce
BLD Farms, Conneaut
Available Now: Mustard Greens
Coming Soon: Seasonal Vegetables
How to order: Email farmmedicoh@gmail.com, Phone 440-812-9921

Lynch Mill Creek Farm, Jefferson
Available Now: Several leafy greens
Coming soon: Many more vegetables
How to order: Contact Greenhouse Manager Dawn at dawn.lmcf@gmail.com On farm pick up, will consider local delivery

Octagon Acres, Conneaut
Available Now: N/A
Coming Soon: Greens and radishes by the end of April
How to order: Please watch their Facebook page for updates, contact email: octagonacresfarm@gmail.com

Phooey Farms, Ashtabula
Available Now: Homemade Breads and Cookies, Horseradish
Coming soon: Seasonal Vegetables
How to order: Call 440-265-0020

Yellow House Farm, Jefferson
Available Now: Swiss Chard
Coming Soon: Cold Crop seedlings, heirloom tomato starts, pepper starts
How to Order: yhfjefferson@gmail.com, Hope 440-645-5695, or find us on Facebook
Lee Beers
Trumbull County Extension
520 West Main Street
Cortland, OH 44410
330-638-6783
beers.66@osu.edu
trumbull.osu.edu

Andrew Holden
Ashtabula County Extension
39 Wall Street
Jefferson, OH 44047
440-576-9008
holden.155@osu.edu
ashtabula.osu.edu

Angie Arnold
Portage County Extension
705 Oakwood St., Suite 103
Ravenna, OH 44266
330-296-6432
arnold.1143@osu.edu
portage.osu.edu

CFAES provides research and related educational programs to clientele on a nondiscriminatory basis. For more information: http://go.osu.edu/cfaesdiversity.
Agriculture and Natural Resources Madness

Tournament of Education

Daily Brackets

Begins March 25

Daily events at
9:00 a.m.
Noon
3:00 p.m.

Visit tournament website for schedule

go.osu.edu/AgMadness

OSU Extension is Open for Business

Learn with us virtually!

Each day, three educational sessions will be presented relating to the “bracket” or subject. Brackets change daily and include topics like food safety, crisis management, home gardening, animal care, crop production, forestry, hemp and many more.

Events are presented virtually via webinars, social media, live events and watch parties. Links to all events are provided on the tournament website.

You can also find links to watch existing educational programs and find relevant resources as we prepare for the 2020 growing season amid COVID-19.

Brought to you by your OSU Extension educators, researchers, faculty, staff and partners.

CFAES provides research and related educational programs to clientele on a nondiscriminatory basis. For more information, visit cfaesdiversity.osu.edu. For an accessible format of this publication, visit cfaes.osu.edu/accessibility.