Hello Northeast Ohio Counties!

The dry weather continues this week, but hopefully we will get a good shower this afternoon or tomorrow. After a wet spring and early summer, it’s odd to say that we could use more rain, but corn leaves are starting to roll in parts of the county.

Several fields of sweet corn have begun to tassel out over the last couple of weeks so harvest won’t be too far behind.

Thank you to everyone that came out to see the 4-H projects at the Trumbull County Fair. We hope to see you next year!
Another hot week...
By: Jim Noel
Source: https://agcrops.osu.edu/newsletter/corn-newsletter/2019-22/another-hot-week

...Another hot week before a trend toward normal...

This week will be marked by hot and humid conditions with rains later Tuesday into Wednesday from the remnants of Barry. Most places will likely see 0.50-1.00 inches but even with Barry going by the rainfall will be highly variable with some areas getting less than 0.50 inches and others getting over 2.00 inches.

It appears the hottest weather this summer will move through starting Thursday through Sunday with highs in the 90s and lows in the 70s. Heat Index values during the upcoming heatwave will top 100 degrees. You can monitor all NOAA/NWS watches, warnings and advisories at https://www.weather.gov/

Temperatures are forecast to relax closer to normal starting the last full week in July into the first half of August. Temperatures are forecast to relax to slightly above normal from the end of July into the first half of August due to night-time temperatures staying above normal.

You can see the latest 6-10 day, 8-14 day and week 3/4 outlooks from the NOAA/NWS Climate Prediction Center at https://www.cpc.ncep.noaa.gov/

July 16-21 - Temperatures = +6 to +10 (much above)
 Rainfall = 0.5-1.0 on average (near normal)
 Heat Index = 90-100+ (much above)
July 22-28 - Temperatures = 0 to +2 (near normal)
 Rainfall = 0.25-0.75 on average (below)
 Heat Index = (normal to below normal)
Week 3-4 - (First Half of August)
 Temperatures slightly above normal
 https://www.cpc.ncep.noaa.gov/products/predictions/WK34/gifs/WK34temp.gif
 Rainfall near normal
 https://www.cpc.ncep.noaa.gov/products/predictions/WK34/gifs/WK34prcp.gif

The 16-day rainfall total is forecast to average 1-2 inches which is normal to slightly drier than normal. Much of the rain in the next two weeks will depend on the remnants of Barry this week.
Staging corn development in 2019
By: Peter Thomison

Corn development varies tremendously across Ohio because of planting dates that range from late April to early July. Some corn is tasseling and silking but in many counties, corn stages range from V7-V12. Moreover, it is not unusual to see striking differences in plant height and growth within cornfields.

It is important to understand corn growth and development in order to determine the health and status of the crop for effective use of management practices (e.g. application of post-emergence chemicals) and assessment of stress events (e.g. flooding, drought, hail, etc.).

Staging corn development is usually fairly straightforward. Starting with the first leaf, which has a short rounded leaf tip (sometime characterized as the “indicator” leaf), count the number of leaves with visible leaf collars. The collar is the yellow green band that appears at the junction of the leaf blade and leaf sheath. Counting leaf collars to determine the vegetative stage is feasible until the lower leaves can no longer be identified. At about the V6 (six-leaf collar) stage, increasing stalk and nodal growth combine to tear the smallest lower leaves from the plant. This results in degeneration and eventual loss of lower leaves which makes it difficult to locate the lower leaves (especially the first rounded leaf). Weathering as a result of excessive rainfall, leaf senescence, and chemical applications also contribute to lower leaf deterioration.

You can estimate what leaf stage of development a particular field is at using its planting date and the growing degree days it is accumulated since planting. University research indicates that from VE to V10 (ten leaf collars), leaf emergence occurs for every 82 to 84 GDDs accumulated (Nielsen, 2008; Abendroth et al., 2011). From leaf stage V10 to the final leaf, leaf collar emergence occurs more rapidly at approximately one leaf every 50 GDDs.

The following examples (from Nielsen, 2019) show how to apply this information

“A field was planted on April 28, but you do not know exactly when it emerged. Since planting, approximately 785 GDDs have accumulated. If you assume that the crop emerged in about 120 GDDs, then the estimated leaf stage for the crop would be about V8. This estimate is calculated by first subtracting 120 from 785 to account for the
estimated thermal time to emergence, then dividing the result (665) by 82 (equal to V8.1)."

“A field was planted on April 28 and emerged on May 5. Since May 5, approximately 1220 GDDs have accumulated. Your familiarity with these calculations tells you that the crop is likely beyond V10 (equal to 10 x 82 or 820 GDDs since emergence). So, first subtract 820 from 1220 (knowing the crop is at least at V10). Divide the result (400) by 50 to equal 8 additional leaves; for a total estimated leaf stage of V18.”

Growth-limiting stresses and conditions (soil moisture deficits, nutrient deficiencies, compaction, etc.) affect the accuracy of these predictions (Nielsen, 2019). Nevertheless, this method may be useful in timing when plants reach an approximate stage of growth.

Another method for the staging development of older plants (with few or no lower leaves) requires first splitting the stalk neatly down the middle and looking for the first noticeably elongated stalk internode. This internode is usually ½ to ¾ inch long. Carefully identify the leaf whose leaf sheath attaches to this node. The fifth leaf is usually attached to the node above this elongated internode. Continue counting the remainder of the leaves with leaf collars to complete leaf stage determination of the plant. Check out a picture showing this in https://www.agry.purdue.edu/ext/corn/news/timeless/VStageMethods.html (from Dr. Bob Nielson at Purdue).

Ohio Manure Science Review 2019

By: Glen Arnold, CCA, Chris Zoller

The 2019 Ohio Manure Science Review is scheduled for Wednesday, August 7 at JIMITA Holsteins, a 400-plus-acre family dairy farm at 9877 Strasburg Bolivar Road NW in Strasburg Ohio. Strasburg is about 20 miles south of Canton, Tuscarawas County, in Northeast Ohio.

Registration is $25 by July 30; $30 after July 30; and includes coffee, doughnuts, and lunch and the afternoon tour. Participants can earn Certified Livestock Manager and Certified Crop Advisor credits.

Morning sessions will discuss manure nutrient uptake by crops, applying manure to emerging crops, reducing phosphorus runoff, manure-related rules and legal issues, and assessing the value of manure beyond its nutrients, including its impact on crop production and soil health.
Field demonstrations will look at calibrating manure spreaders, stockpiling solid manure, side-dressing crops with liquid manure, manure application using injection and shallow tillage, and silage leachate and manure handling.

Full program details, including the speakers, topics, and a mailable registration form, are available at go.osu.edu/2019MSR or by calling 330-202-3533. Online registration is available through Aug. 1 at go.osu.edu/msr2019.

The event runs from 9:20 a.m. to 3 p.m. with the morning being dedicated to educational sessions and the afternoon towards equipment. From 3:30 to 4:30 p.m. there is an optional tour of Bull Country Compost, located at 10316 Kohr Road NW in Dundee.

In addition to College of Food, Agricultural, and Environmental Science, the event’s collaborators are the Tuscarawas Soil and Water Conservation District, Ohio Department of Agriculture, Cooper Farms, and Ohio Farm Bureau. Manure Science Review’s many sponsors include the Ohio Livestock Coalition and some of its partners: the Ohio Poultry Association, Ohio Pork Council, Ohio Dairy Producers Association, and Ohio Cattlemen’s Association.

Western Bean Cutworm: Numbers Starting to Increase

Week three of The Ohio State University Western bean cutworm (WBC) monitoring network has resulted in an increase of moths captured. Last week’s trap count included WBC adults captured from July 8 – July 13. A total of 24 counties monitored 75 traps across Ohio. Overall, trap counts increased, resulting in a total of 287 WBC adults (18 total last week) and a statewide average of 3.8 moths/trap (up from 0.3 average last week) (Figure 1). While it is not likely we are at peak flight for WBC in Ohio just yet, there are counties that reported a trap average that indicates scouting for egg masses should begin. These counties include: Champaign, Clark, Coshocton, Fulton, and Lucas.
Scouting and management.

- Check pre-tassel corn approaching tassel fields first – females prefer these fields to deposit eggs.
- To scout for eggs or larvae, choose at least 20 consecutive plants in 5 random locations (scout different areas of the field that may be in different growth stages).
- Inspect the uppermost 3–4 leaves.
- Threshold (when to consider treatment):
 - Field corn, if >8% of inspected plants have eggs or larvae.
 - Sweet corn, if >4% of inspected plants have eggs or larvae for the processing market or on >1% of plants for fresh-market.

If infestations exceed threshold, many insecticides are available to adequately control WBC, especially those containing a pyrethroid. However, as with any ear-burrowing caterpillar pest, timing is critical. Insecticide applications must occur after egg hatch, or after tassel emergence, but before caterpillars enter the ear. If eggs have hatched, applications should be made after 95% of the field has tassel. If eggs have not hatched, monitor for the color change. Hatch will occur within 24–48 hours once eggs turn purple. To search for larval injury after it has occurred, search the corn for ears having feeding holes on the outside of the husks.
Life cycle and feeding. Adult moths (what we monitor in the traps) will be making their way into corn fields where females lay eggs on the uppermost portion of the flag leaf. Eggs are laid in unevenly distributed clusters of 5–200, but averaging about 50 per cluster, and hatch within 5–7 days (Figure 2). Eggs first appear white, then tan and then a dark purple. Once eggs turn purple, they will hatch within 24 to 48 hours (Figure 3). In pre-tassel corn, caterpillars will move to the whorl to feed on the flag leaf and unemerged tassel. Once the tassel emerges, larvae then move to the ear, while feeding on corn pollen, leaf tissue, and silks. Later they will enter the ear through the tip, or by chewing through the side of the husk. Damage occurs from both direct feeding and from mold problems at feeding sites.

WBC egg mass
Figure 2. WBC egg mass

WBC larvae hatching from egg mass. Size compared to US dime.
Figure 3. WBC larvae hatching from egg mass. Size compared to US dime.
Respiratory Alert - Wheat harvest may expose farmers to vomitoxin and other moldy conditions in the grain dust

By: Dee Jepsen, Pierce Paul

This year, due of the wet conditions we experienced during the spring, Fusarium head blight, also known as head scab, developed in a few localized areas of the state. Grain harvested from scab-affected fields is often contaminated with vomitoxin and other mycotoxins, because the disease and toxins go hand in hand. Severely affected kernels are usually small, shriveled, lightweight, covered with pinkish-white fungal mycelium, and most importantly, heavily contaminated with mycotoxins. Compared to healthy kernels, scabby kernels break easily during grain harvest, transport, and other forms of grain handling, increasing the number of fine particles and the amount of dust in the grain lot. Dust in grain harvested from scab-affected fields contain a mixture of tiny pieces of kernels, spikes, and straw, all of which are contaminated with vomitoxin, as well as pieces of fungal mycelium (mold).

Breathing grain dust can have adverse effects on the human respiratory system. When the dust is also suspect of mycotoxins, it is especially necessary to take precautions.

Wearing a disposable, 2-strap N95 mask (respirator) helps protect the worker from breathing in dusty, moldy and toxic substances. This type of personal protection equipment will filter out at least 95% of the dust and mold in the air. The 1-strap mask does not have this level of protection, and is basically worthless in agricultural environments.

How to wear the N95 correctly

Make sure you wear the N95 whenever working in dusty and moldy environments, especially at the grain storage and handling bins.

- The mask should have a tight fit over your nose and mouth, and requires contact with smooth skin. Facial hair, eyeglasses and certain dental appliances can prevent the mask from making a seal around your face.
- The N95 respirator is available in many sizes and various configurations, making sure the proper fit can be made.
- Always use both straps to hold the mask in place and prevent air from leaking in around the edges.
How to test your respirator for proper fit

Ideally the N95 should be fit-tested for each worker. Once a fit-test is performed, the worker will know which type provides the best fit. Then before each use, perform a seal test to be sure the mask fits snugly
 • Negative pressure check:

Place both hands completely over the mask and inhale sharply. The mask should pull into your face. If you feel any air leaking around your face or eyes, adjust the nosepiece and straps for a tighter fit.
 • Positive pressure check:

Place both hands completely over the mask and breathe out sharply. Be sure to cover the exhalation valve if your mask is equipped with one. No air should leak out of the mask if it fits properly. If air leaks, adjust the nosepiece and straps for a tighter fit.

When to throw out the N95 mask

Consider the N95 respirator similar to the air filter in your vehicle.
 • When the mask gets clogged beyond a comfortable condition, replace it with a new mask. Likewise, if the inside of the mask becomes dirty, dispose of it.
 • Replace masks if they become wet, torn or have stretched out straps
 • N95s are made to be disposable, they cannot be cleaned or disinfected.

There are no recommendations for how many minutes or hours a mask will last in agricultural environments. A face mask filter is rated to absorb a total mass of 200mg, however on the farm, the time to reach this level is not known. Each respirator will be affected by personal hygiene, breathing resistance and density of the air contaminants. Each job will vary - as will the heat, humidity and other environmental conditions while performing the job.

A 2-strap N95 respirator is the best form of protection from moldy and dusty grain dust. Protect yourself and all workers exposed to wheat dust during the Ohio wheat harvest.

For more information on respirators for farm use, consult the OSU Extension Factsheet: Dust and Mold, AEX 892.2.11 https://ohioline.osu.edu/factsheet/aex-892211
Corn earworm arrived early in sweet corn
By: Celeste Welty & Jim Jasinski

Corn earworm has showed up unusually early this year and has been infesting early sweet corn that was not adequately protected. The earworm population as detected by moths caught in pheromone traps was very high in early June (161 moths in one trap in one week in Columbus), and again in late June at some sites (125 moths in one trap in one week). However, this past week, the number of moths caught dropped greatly (7 in one trap at Columbus). Similar trends have been reported from other parts of Ohio. As long as corn earworm moths are active, sweet corn fields that are in the early silk stage will become infested by corn earworm unless preventive measures are taken. The infestation will be less intense in sweet corn fields if the local fields of grain corn are in the silking stage, but due to the early summer rains causing delay in planting, grain corn in much of Ohio is not yet at the silking stage, thus sweet corn will be extra vulnerable to earworm attack. Once corn earworm is detected, silking sweet corn should be sprayed with insecticide every 2-6 days. The choice of an appropriate spray interval is as important as the choice of product to use. Details about the most appropriate spray interval based on pheromone traps are shown in the chart below.

Growers who do not yet have a trap can find information about buying a trap with this link: https://cpb-us-w2.wpmucdn.com/u.osu.edu/dist/1/8311/files/2019/07/TrapSpecsAndSources2019.pdf and information about using the trap with this link:

Our testing of insecticides for corn earworm control over the past 13 years has shown that pyrethroids (Warrior, Asana, Pounce, Mustang Maxx, Brigade, Baythroid, Hero) are generally effective for earworm control when the earworm population is low to moderate but generally not effective when the population is high. If pyrethroids are used, they should be used at the maximum labeled rate. Among pyrethroids, Hero is generally the most effective; it is a pre-mix of two different pyrethroids (Mustang Maxx and Brigade). Alternatives to pyrethroids are Coragen, Radiant, and Blackhawk, and the pre-mix Besiege, which was formerly called Voliam Xpress. Organic growers can use Entrust or a B.t. such as Javelin or Dipel.

For plantings of B.t. transgenic hybrids (the Attribute II series and the Seminis Performance series), we have found that the B.t. provides adequate control of corn earworm when populations are low, but not when earworm populations reach high density. These hybrids provide the best control when silks are fresh but less control when silks begin to dry. Thus insecticide sprays during the later part of the silking period are helpful to prevent earworm infestation in transgenic sweet corn.

Yield-boosting stay-green gene identified from 118-year-old experiment in corn

A corn gene identified from a 118-year-old experiment at the University of Illinois could boost yields of today's elite hybrids with no added inputs. The gene, identified in a recent *Plant Biotechnology Journal* study, controls a critical piece of senescence, or seasonal die-back, in corn. When the gene is turned off, field-grown elite hybrids yielded 4.6 bushels more per acre on average than standard plants.

Dating back to 1896, the Illinois experiment was designed to test whether corn grain composition could be changed through artificial selection, a relatively new concept introduced by Charles Darwin just 37 years earlier. Repeated selection of high- and low-protein corn lines had the intended effect within about 10 generations. As selection for the traits continued, however, additional changes were noticeable.

"One of the things that was noted as early as the 1930s was that the low-protein line stays greener longer than the high-protein line. It's really obvious," says Stephen Moose, professor in the Department of Crop Sciences at Illinois and co-author of the study.
Staying green longer into the season can mean more yield. The plant continues photosynthesizing and putting energy toward developing grain. But, until now, no one knew the specific gene responsible for the stay-green trait in corn.

"The stay-green trait is like a 'fountain of youth' for plants because it prolongs photosynthesis and improves yield," says Anne Sylvester, a program director at the National Science Foundation, which funded this research. "This is a great basic discovery with practical impact."

The discovery of the gene was made possible through a decade-long public-private partnership between Illinois and Corteva Agriscience. Moose and Illinois collaborators initially gave Corteva scientists access to a population derived from the long-term corn protein experiment with differences in the stay-green trait. Corteva scientists mapped the stay-green trait to a particular gene, NAC7, and developed corn plants with low expression for the trait. Like the low-protein parent, these plants stayed green longer.

They tested these plants in greenhouses and fields across the country over two field seasons.

Not only did corn grow just fine without NAC7, yield increased by almost 5 bushels per acre compared to conventional hybrids. Notably, the field results came without added nitrogen fertilizer beyond what farmers typically use.

"Collaborating with the University of Illinois gives us the opportunity to apply leading-edge technology to one of the longest running studies in plant genetics," says Jun Zhang, research scientist at Corteva Agriscience and co-author of the study. "The insights we derive from this relationship can result in more bushels without an increase in input costs, potentially increasing both profitability and productivity for farmers."

Moose's team then sequenced the NAC7 gene in the high- and low-protein corn lines and were able to figure out just how the gene facilitates senescence and why it stopped working in the low-protein corn.

"We could see exactly what the mutation was. It seems to have happened sometime in the last 100 years of this experiment, and fortunately has been preserved so that we can benefit from it now," Moose says.

He can't say for sure when the mutation occurred, because in the 1920s crop sciences faculty threw out the original seed from 1896.
"They had no way of knowing then that we could one day identify genes controlling these unique traits. But we have looked in other corn and we don't find this mutation," Moose says.

Future potential for this innovation could include commercialized seed with no or reduced expression of NAC7, giving farmers the option for more yield without additional fertilizer inputs.

Moose emphasizes the advancement couldn't have happened without both partners coming to the table.

"There's value to the seed industry and society in doing these long-term experiments. People ask me why university scientists bother doing corn research when companies are doing it," he says. "Well, yeah they are, and they can do things on a larger and faster scale, but they don't often invest in studies where the payoffs may take decades."

Lee's Monthly News Column

Hello Trumbull County! Isn't it nice to finally have some dry weather? I know I was happy, as we were able to put up some hay last week – but the saying “too little, too late” is sticking in my mind. By the time the ground dried out well enough to get the rest of the corn crop in, the potential for yield had declined because it was so late. As I mentioned in last month’s article, many farmers were hoping to plant corn this year as it looked to be a more profitable crop. Well, there was corn planted in Trumbull County, but not nearly as much as farmers were hoping. Many acres of ground intended for corn were planted with soybeans because they need fewer days to mature for harvest. This has an impact on the farmers’ pocket book, and could increase the potential for disease in places where soybeans were planted on the same field for multiple years in a row.

Livestock farmers, especially dairy farmers, are still reeling from a poor growing season in 2018 that left their feed supplies short. I know some dairies have had to purchase feed from off the farm for the last few months, further diminishing possible profits. Add to that the forecast for this growing season, and you can imagine the stress they may be under. Fortunately, there is still time to plant forages to harvest as silage, though it won’t be as high quality or produce as much tonnage as a full season corn crop could provide.

The USDA has recognized the serious need for feed for our livestock, and they have granted a one-year waiver to plant corn as a cover crop that can be harvested as silage. They have also opened up a wide variety of other cover crop options that will help farmers grow forage, prevent weed seed, and provide financial support for seeding the cover crops. OSU Extension has been in continuous contact with the USDA to make the case for farmers, while also helping to clarify changes to policy as they roll out from the
USDA. To help keep information up to date, a dedicated FAQ website has been created (https://u.osu.edu/2019farmassistance/faqs/) that will be updated on a regular basis as new questions arise or new information becomes available.

I’ve been asked many times over the last few months what the situation in Trumbull County looks like, and my answer has always been a version of “It’s not good, but it could definitely be worse.” Speaking to my colleagues in NW Ohio, they have very few acres of crops planted (10%) compared to NE Ohio. We may be farther ahead on planted acres, but the real measure of the growing season won’t be known until harvest this fall. It’s a stressful time. There are many progressive, experienced, great farmers out there that did everything right, and still fell short. It’s not their fault- sometimes Mother Nature wins. If you know a farmer I’d advise that you stop in and see how they are doing. Let them know that there are resources available to help them to deal with stress, and programs to help. Please feel free to reach out to us directly with any questions you may have for yourself or others, and let us know how we can help.

I want to leave this article on a good note because not everything in the agricultural world is doom and gloom. The Trumbull County Fair is going on this week, and I encourage everyone to get out and see what agriculture is about. There are numerous animals, displays, and a huge variety of 4-H projects that show the work of our county’s youth. It is a great time to learn about where your food comes from, and what is growing in our county. Stop and ask a 4-H kid about their project – they have put a lot of hard work into the project so they are usually willing to talk about it proudly. On another positive note, I was visiting with a local dairy farmer a couple of weeks ago, and he was going through the process of putting in a new milking parlor. He’s investing in Trumbull County’s ag future, and I hope you all do, as well.

The Trumbull County Master Gardeners are now accepting applications for the 2019 training class. If you are interested in applying, please call our office to request an application. Applications are due by July 20th to be considered for this year’s class.

Mark your calendars for August 24th when we hold a hay making workshop in Johnston Township! We’ll have dealer displays, demonstrations, and experts to talk about making high quality hay in a tough year. We’ll be talking equipment settings, nutrient testing, hay making processes (wet and dry hay), and generally how to make the best quality hay possible.

For more information about 4-H, FCS, Agriculture, or Master Gardeners please call the OSU Trumbull County Extension Office at 330-638-6783 or visit trumbull.osu.edu. Don’t forget to check out and “Like” OSU Extension Trumbull County’s Facebook page for current programs and up to date information.
Extended Forecast – NOAA, Weather.gov, Cortland, OH

- **Today**: Chance T-storms, High: 86 °F, Low: 70 °F
- **Tonight**: Heavy Rain, High: 85 °F, Low: 68 °F
- **Wednesday**: Heavy Rain, High: 79 °F, Low: 69 °F
- **Wednesday Night**: Chance T-storms, High: 90 °F, Low: 70 °F
- **Thursday**: Partly Sunny, High: 88 °F, Low: 73 °F
- **Thursday Night**: Slight Chance T-storms, High: 93 °F, Low: 75 °F
- **Friday**: Partly Sunny, High: 94 °F, Low: 75 °F
- **Friday Night**: Partly Cloudy, High: 94 °F, Low: 75 °F
- **Saturday**: Mostly Sunny

Extended Forecast – NOAA, Weather.gov, Jefferson, OH

- **Today**: Heavy Rain, High: 86 °F, Low: 70 °F
- **Tonight**: Heavy Rain, High: 83 °F, Low: 68 °F
- **Wednesday**: Heavy Rain, High: 83 °F, Low: 68 °F
- **Wednesday Night**: Chance T-storms, High: 90 °F, Low: 70 °F
- **Thursday**: Partly Sunny, High: 88 °F, Low: 73 °F
- **Thursday Night**: Slight Chance T-storms, High: 92 °F, Low: 75 °F
- **Friday**: Partly Sunny, High: 92 °F, Low: 75 °F
- **Friday Night**: Partly Cloudy, High: 92 °F, Low: 75 °F
- **Saturday**: Mostly Sunny

Upcoming Events

Ohio Manure Science Review 2019

Northeast Ohio Agriculture

OHIO STATE UNIVERSITY EXTENSION
Ashtabula and Trumbull Counties
- **August 7-** 877 Strasburg Bolivar Road NW, Strasburg, Ohio

Making Quality Hay Workshop
August 24, 2019
Don’t Miss It! JULY 30, 2019 @2 p.m.

CATHANN A. KRESS
VICE PRESIDENT AND DEAN

2019

DEAN’S CHARITY STEER SHOW

Local celebrity exhibitors partnered with a 4-H member and their steer.

Awards include:
Best Steer, Showmanship, and People’s Choice.

A “sale,” (same as a livestock sale but no actual transfer of livestock) raising funds to benefit the Ronald McDonald House Charities® of Central Ohio.

cfaes.osu.edu/deanscharitysteershow

All proceeds benefit:
Ronald McDonald House Charities®
Central Ohio

Ohio Expo Center
& State Fair
Voinovich Livestock
& Trade Center

COORDINATED BY

THE OHIO STATE UNIVERSITY
COLLEGE OF FOOD, AGRICULTURAL,
AND ENVIRONMENTAL SCIENCES

telhio Credit Union

Ohio Cattlemen’s Association
Interested in taking a Mental Health First Aid Training?
Classes for adults who work with youth will be offered through OSU Extension:

Community Event: August 20 8:00 a.m. – 4:30 p.m.
Buckeye Schools Educator Training: August 22 8:00 a.m.
Edgewood High School 2428 Blake Rd, Ashtabula, OH 44004
Register at: http://go.osu.edu/mentalhealthtraining

Sometimes, first aid isn’t
a bandage,
or CPR,
or the Heimlich,
or calling 911.

Sometimes, first aid is YOU!

Someone you know could be experiencing a mental health challenge or crisis. You can help them.

You are more likely to encounter someone — friend, family member, student, neighbor, or member of the community — in an emotional or mental crisis than someone having a heart attack. Mental Health First Aid teaches a 5-step action plan to offer initial help to young people showing signs of a mental illness or in a crisis and connect them with the appropriate professional, peer, social, or self help care.

Anyone, ages 18 and over, can take the 8-hour Mental Health First Aid ® or Youth Mental Health First Aid course and receive a 3 year certification from the National Council for Behavioral Health.

Sometimes, the best first aid is you. Take the course, save a life, and strengthen your community.

For more information call Ashtabula County OSU Extension at 440-576-9008

OSU Extension MHFA Team
Jami Dellifield, Hardin County, dellifield.2@osu.edu
Lorrissa Dunfee, Belmont County, dunfee.54@osu.edu
Colleen Fitzgibbons, College of Public Health, fitzgibbons.11@osu.edu
Heather Gottke, Van Wert County, gottke.4@osu.edu
Misty Harmon, Perry County, harmon.416@osu.edu
Amanda Raines, Hardin County, raines.74@osu.edu