Hello Northeast Ohio Counties!

More rain and warm weather has allowed for area crops to grow rapidly, with much of our corn surpassing R1. Check out the article on corn ear abnormalities to learn more about what causes each issue. Soybeans are variable across the region, with some late planted beans struggling to catch up.

Before you head out scouting crops this week, check out the article on defoliation in soybean and corn, for common pest, and when they start to effect yields!

Also, check out the 2022 custom rate article. With rising inputs, we have seen some changes from 2021.

Stay safe and have a great week!

Lee Beers
Trumbull County Extension Educator

Andrew Holden
Ashtabula County Extension Educator

Angie Arnold
Portage County Extension Educator
Weather Update: Ample July Precipitation for Most

By: Aaron Wilson

Summary

The precipitation pendulum has swung back the other direction for many across the state in July. Figure 1 shows that much of western and central Ohio have picked up more than 150% of normal precipitation, with multiple rounds of showers and storms. CoCoRaHS observations for the month show rainfall totals in the 8–10-inch range for Delaware, Licking, and Franklin Counties in central Ohio. This wet pattern has been accompanied by temperatures running near average for most of Ohio, and 1-3°F above average for counties in the southwest and northeast. The seesaw nature of this year’s growing season has left highly variable crop conditions, though much of the stress from dry weather in June has been alleviated. For the latest up-to-date conditions, seasonal outlooks, and monthly climate summaries, please visit the State Climate Office of Ohio.

![Figure 1](https://mrcc.purdue.edu). Percent of normal precipitation for the July 2022 to date. Figure courtesy of the Midwestern Regional Climate Center (https://mrcc.purdue.edu).

Forecast

A front that dropped south of the region on Monday, will edge back northward near the Ohio river on Tuesday and meander there through Thursday. Multiple disturbances will ride eastward along this front, bringing numerous rounds of showers and storms across the state. Most of the activity will be focused south of about I-70, though northern Ohio
will not be rainfree. Temperatures will be kept in check, with highs in the 70s expected on Tuesday, and upper 70s to low 80s on Wednesday and Thursday. Dry, tranquil weather will return for Friday through the weekend, with low humidity and mild temperatures. The Weather Prediction Center is forecasting 1.0-3.0 inches of rain for southern counties, tapering to less than 0.5 inch across the north, primarily over the next 3 days (Figure 2).

After this week’s near normal temperatures, the Climate Prediction Center’s 6–10-day outlook for the period of July 31 – August 4, 2022 and the 16-Day Rainfall Outlook from NOAA/NWS/Ohio River Forecast Center show above average temperatures and near average precipitation are expected (Figure 3). Climate averages have reached their annual peak including a high-temperature range of 83-87°F, a low-temperature range of 62-66°F, and average weekly total precipitation of 0.75-0.90 inches.

Figure 2). Precipitation forecast from the Weather Prediction Center for 8pm Monday July 25 – 8pm August 2.

Figure 3) Climate Prediction Center 6-10 Day Outlook valid for July 31 – August 4, 2022, for left) temperatures and right) precipitation. Colors represent the probability of below, normal, or above normal conditions.
Defoliation in Soybean and Corn

By: Kelley Tilmon, Andy Michel

Starting in July and through August, a number of different insect species (such as beetles and various caterpillars) can feed on corn and soybean leaves. Foliage feeding in corn is almost never economic, though economic damage from silk clipping by beetles is possible (though rare). Consider a rescue treatment when silks are clipped to less than ½ inch and, fewer than 50% of the plants have been pollinated, and the beetles are still numerous and feeding in the field.

In soybean, while the defoliation damage from various species might look startling, it is rather rare that this reaches economic levels. Soybeans are master compensators. OSU agronomist Dr. Laura Lindsey reports that she has even weed-whacked large portions of soybean foliage and seen no difference in yield by the end of the season! For defoliating insects in soybean, we usually use an overall defoliation measure as the threshold, regardless of what species is doing the feeding. This helps account for situations where more than one species may be having its bite. Entomologists have recently calculated new thresholds for soybean defoliation based on more modern crop values and input costs. A rescue treatment is advised when defoliation levels reach 30% in pre-bloom stages, 10% during pod development and fill, and 15% at R6 (full seed). After R6, a spray will not pay. These defoliation levels apply to the plant as a whole, not just certain leaves. Damage is often worst at the top of the canopy but on closer examination most of the plant is relatively unharmed. Make your decision based on the average condition of whole plants, not a scan of the top canopy. Also, defoliation tends to be worse on field edges, so make your assessment based on the field as a whole, including interior.

A visual guide to defoliation is useful because it is very easy to over-estimate defoliation in soybean. For more information, visit our new Soybean Defoliation scouting card at https://aginsects.osu.edu/sites/aginsects/files/imce/Soybean%20defoliation%20Final.pdf
Other Corn Ear Abnormalities – when and why do they develop?

By: Osler Ortez

State Specialist Osler Ortez sharing information on abnormal corn ears during Western Ag Research Station Field Day.

Despite many corn acres having reached tasseling, other corn acres are still in rapidly growing stages, mid to late vegetative. Any adverse conditions can still affect the crop through or prior to harvest. Arrested ears’ occurrence was discussed two weeks ago. Other ear abnormalities of concern up to this point in the season can include tassel ears, fasciated ears, pinched ears, blunt ears, silk-balled ears, incomplete kernel set, banana ears, zipper ears, and tipped back ears.

Based on existing knowledge, table 1 and the following figures present a summary of these abnormalities, including the possible causal factors and their expected timing of development. Plant stages used here are based on the leaf collar method.

Table 1. Summary of various abnormal ear symptoms, their causal factors, and development timing. Adapted from Ortez et al., 2022a.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible causal factors</th>
<th>Development timing</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tassel ears: ears at the top of tiller plants in place of tassels</td>
<td>Lower populations, end or border rows, growing point damage, genetics</td>
<td>Initiation and differentiation of tiller’s apical meristem into floral structure</td>
<td>1</td>
</tr>
<tr>
<td>2. Fasciated ears: increased and non-organized kernel rows</td>
<td>Specific mutants (i.e., genetics), cold temperatures</td>
<td>Ear initiation and development, V4–V7</td>
<td>2</td>
</tr>
<tr>
<td>3. Pinched ears: abrupt change to</td>
<td>Cell division inhibitors, for example, sulfonylurea herbicides</td>
<td>Ear size determination period, V6–V12</td>
<td>3</td>
</tr>
</tbody>
</table>

Northeast Ohio Agriculture
fewer kernel rows in the ear	Plant stressors (e.g., chemicals or environment), genetics, management	Ear size determination period, V6–V12	4
4. **Blunt ears**: noticeably shorter and stunted ears	Cold temperatures, drought, genetics	Silk elongation, V12–R1	5
5. **Silk-balled ears**: silks fail to elongate toward the ear tip properly	Silks damage, drought, high temperatures, pollination issues, phosphorus shortages, herbicide injury, cloudy days	Pollination, VT or R1; and early reproductive stages, R1–R3	6
6. **Incomplete kernel set**: poor or scattered kernel set in the ear	Severe weather, chemical applications, heat or drought, stink bug injury	Pollination, VT or R1; and early reproductive stages, R1–R3	7
7. **Banana ears**: the curvature of the cob toward a damaged side of the ear	Higher seeding rates, drought stress, genetics, defoliation, deficient pollination	Pollination, VT or R1; and early reproductive stages, R1–R3	8
8. **Zipper ears**: ears with missing kernel rows	Pollen and silk availability, kernel abortion, cloudy days, heat, drought, genetics, higher seeding rates	Pollination, VT or R1; and early reproductive stages, R1–R3	9
9. Tipped-back ears: missing kernels at the tip of the ear			

1. **Tassel ears**

![Image](https://via.placeholder.com/150)

Figure 1. (a) Complete replacement of tassel and (b–c) partial replacement of tassel on tillers in an end row. Images: (a) Osler Ortez, (b–c) Robert Nielsen.

2. **Fasciated ears**

Northeast Ohio Agriculture

OHIO STATE UNIVERSITY EXTENSION
Ashtabula, Portage and Trumbull Counties
Figure 2. Fasciated popcorn ear with seven ear branches. (a) Side and (b) top views. Images: Osler Ortez.

3. Pinched ears

Figure 3. Corn ears at different developmental stages. (a) Mature pinched ear due to sulfonylurea herbicide applied between V7 and V10 stages, (b) developing ear at the V9 stage, and (c) developing ear at V12 stage. Images adapted from Strachan (2010). Images: (a–b) Antonio Perdomo, (c) Stephen Strachan.
4. Blunt ears

Figure 4. Blunt ears, beer-can ears, or stunted ears. (a) The similarity in kernel row number of a blunt ear compared with a normal ear, but with arrested ovule and kernel development. (b) Different degrees of arrested development in blunt ears. Images: (a) Robert Nielsen, (b) Peter Thomison.

5. Silk-balled ears

Figure 5. (a–b) Silk-balled ears or scrambled silks, silks growing in different directions trapped within the husk and (c) ears with various severity levels of damage. Images: Robert Nielsen.

6. Incomplete kernel set
Figure 6. (a) Ears displaying incomplete kernel set; and (b–c) silk-clipped ears, damage caused by insect clipping before or during pollination. Images: (a) Peter Thomison, (b) Robert Nielsen, (c) Osler Ortez.

7. Banana ears

Figure 7. Banana ears exhibit curvature along the cob shape with different degrees of damage (A, B, C). Husk leaves were removed (if needed) for better symptom visibility. Images: Osler Ortez.

8. Zipper ears

Figure 8. (a) Zipper ears increase at higher seeding rates; from left to right (three ears per treatment): 62,000, 86,000, and 111,000 seeds per hectare. (b) Ear with several kernel rows missing due to pollination or abortion issues, husk leaves were removed for better symptom visibility. Images: (a) Peter Thomison, (b) Osler Ortez.
9. Tipped-back ears

Figure 9. Tipped-back ears with unfilled kernels towards the tip. (a) Ear with about 50% tipped back, (b) about 25% tipped-back, (c) about 10% tipped-back, and (d) about 5% tipped back. Husk leaves were removed for tip-back visibility. Images: (a, b, and d) Osler Ortez, (c) Justin McMechan.

To learn more about these and other abnormal ears, a literature review is summarized here: https://doi.org/10.1002/agj2.20986. For more resources, previous work in Ohio has a comprehensive summary available, *Troubleshooting Abnormal Corn Ears*: https://u.osu.edu/mastercorn/.

When it comes to abnormal ears, questions still need answers. However, with the knowledge available, abnormal ears can be seen as the result of an “expression triangle” where susceptible hybrids, conducive environmental conditions, and unfavorable management practices can result in abnormal ears. The crop’s exposure to unfavorable conditions can negatively affect ear formation and produce abnormal ears. Abnormal ears reduce yield and can reduce grain quality too.

Seeding Perennial Forages in Late Summer

By: Mark Sulc

Source: https://agcrops.osu.edu/newsletter/corn-newsletter/2022-24/seeding-perennial-forages-late-summer

August is the second good window of opportunity of the year for establishing perennial forage stands (spring being the first good planting time). August is also the ideal time for filling in gaps in seedings made this spring. The primary risk with late summer forage seedings is having sufficient moisture for seed germination and good plant establishment before cold weather arrives. The decision to plant or not will have to be made for each individual field, considering soil moisture status and the rainfall forecast.

Northeast Ohio Agriculture
OHIO STATE UNIVERSITY EXTENSION
Ashtabula, Portage and Trumbull Counties
Rainfall and adequate soil moisture in the few weeks immediately after seeding is the primary factor affecting successful forage establishment.

No-till Seedings
No-till seeding is an excellent choice to conserve soil moisture for seed germination in late summer. Make sure that the field surface is relatively level and smooth if you plan to no-till, because you will have to live with any field roughness for multiple years of harvesting operations. No-till into wheat stubble would be an excellent option. Sclerotinia crown and stem rot is a concern with no-till seedings of alfalfa or red clover in late summer in fields with a recent history of clover. This pathogen causes white mold on alfalfa seedlings and infects plants during the cool rainy spells in late October and November. Early August plantings dramatically improve the alfalfa's ability to resist or tolerate the infection. Late August or early September seedings are very susceptible to this disease, with mid-August plantings being intermediate. In a no-till situation, minimize competition from existing weeds by applying glyphosate burndown before planting. Herbicide-resistant weeds, such as marestail, create a very difficult situation and there are no effective control options in no-till management, so conventional tillage for seedbed prep is probably a better choice in those situations.

Conventional Tillage Seedings
Prepare a firm seedbed to ensure good seed-to-soil contact. Be aware that too much tillage depletes soil moisture and increases the risk of soil crusting. Follow the "footprint guide" that soil should be firm enough for a footprint to sink no deeper than one-half inch. Tilled seedbeds usually do not need a pre-plant herbicide.

Patching Spring Seedings
Where gaps exist in seedings made this spring, it is possible to drill in seed now, even in alfalfa. Autotoxicity will not be a limiting factor in alfalfa seedings made this spring. Alfalfa plants that are less than a year old do not release enough autotoxic compounds into the surrounding soil to harm new seedlings of alfalfa. So, this summer is the last opportunity to try to "patch-in" alfalfa in thin areas of alfalfa stands seeded this spring. By next spring, autotoxicity will be a concern.

Grassy weeds are probably present in thin or weak areas of new spring seedings. As soon as possible, consider applying a grass herbicide to pure legume stands or a broadleaf herbicide if needed in pure grass stands. If broadleaf weeds are present in legume stands or mixed grass-legume stands, effective herbicide options are much more limited, because most broadleaf herbicides labeled for use in alfalfa or other legume forages are only effective when the weeds are quite small. Before applying a herbicide, check the label for pre-plant time intervals that may be required. Use only herbicides with little or no time interval between application and seeding forages. Take a cutting in early August and then immediately drill seed into the thin areas. Try to time drilling the seed when you see some rain in the forecast, especially if the soil is dry.
The following steps improve the chances for stand establishment success regardless of what type of seeding you are making:

- **Soil fertility and pH:** The recommended soil pH for alfalfa is 6.5 to 6.8. Forage grasses and clovers should have a pH of 6.0 or above. The optimal soil phosphorus level for forage legumes is 30 to 50 ppm Mehlich-3 and for grasses 20 to 30 ppm Mehlich-3. The optimal soil potassium level is 120 to 170 ppm for most of our soils.

- **Check herbicide history of field:** A summary table of herbicide rotation intervals for alfalfa and clovers is available at http://go.osu.edu/herbrotationintervals. Forage grasses are not included in that table, so check the labels of any herbicides applied to the field in the last 2 years for any restrictions that might exist for forage grass seedings.

- **Seed selection:** Be sure to use high quality seed of adapted varieties and use fresh inoculum of the proper Rhizobium bacteria for legume seeds. “Common” seed (variety not stated) is usually lower yielding and not as persistent, and from our trials the savings in seed cost is lost within the first year or two through lower forage yields.

- **Planting date:** Planting of alfalfa and other legumes should be completed between late July and mid-August in Northern Ohio and between early and late August in Southern Ohio. Most cool-season perennial grasses can be planted a little later. Check the Ohio Agronomy Guide for specific guidelines (see http://go.osu.edu/forage-seeding-dates).

- **Planter calibration:** If coated seed is used, be aware that coatings can account for up to one-third of the weight of the seed. This affects the number of seeds planted in planters set to plant seed on a weight basis. Seed coatings can also dramatically alter how the seed flows through the drill, so calibrate the drill or planter with the seed to be planted and don’t depend on planter calibration charts. There is an excellent video on calibrating drills available at https://forages.osu.edu/video.

- **Seed placement:** The recommended seeding depth for forages is one-quarter to one-half inch deep. It is better to err on the side of planting shallow rather than too deep.

Do not harvest a new perennial forage stand this fall. The ONLY exception to this rule is perennial and Italian ryegrass plantings. Mow or harvest those grasses to a stubble height of two and a half to three-inches in late November to improve winter survival. Do NOT cut any other forage species in the fall, especially legumes.
Scout your new forage seeding this fall on a regular basis. Post-emergence herbicide options exist for alfalfa to control late summer and fall emerging winter annual broadleaf weeds. A mid- to late fall application of Butyrac (2,4-DB), bromoxynil, Pursuit or Raptor are the primary herbicide options for winter annual broadleaf weeds. Fall application is much more effective than a spring application for control of these weeds especially if wild radish/wild turnip are in the weed mix. Pursuit and Raptor can control winter annual grasses in the fall in pure legume stands but cannot be used in a mixed alfalfa/grass planting. Consult the 2022 Weed Control Guide for Ohio, Indiana, and Illinois (https://extensionpubs.osu.edu/crops/field-crops/) and always read the specific product label for guidelines on timing and rates before applying any product.

Ohio Farm Custom Rates 2022
By: Barry Ward, Leader, Production Business Management, OSU Extension, Agriculture and Natural Resources; John Barker, Extension Educator Agriculture/Amos Program, Ohio State University Extension Knox County and Eric Richer, Extension Educator Agriculture & Natural Resources, Ohio State University Extension Fulton County
Source: https://u.osu.edu/ohioagmanager/2022/07/24/ohio-farm-custom-rates-2022/

Farming is a complex business and many Ohio farmers utilize outside assistance for specific farm-related work. This option is appealing for tasks requiring specialized equipment or technical expertise. Often, having someone else with specialized tools perform tasks is more cost effective and saves time. Farm work completed by others is often referred to as “custom farm work” or more simply, “custom work”. A “custom rate” is the amount agreed upon by both parties to be paid by the custom work customer to the custom work provider.

Ohio Farm Custom Rates
The “Ohio Farm Custom Rates 2022” publication reports custom rates based on a statewide survey of 223 farmers, custom operators, farm managers, and landowners conducted in 2022. These rates, except where noted, include the implement and tractor if required, all variable machinery costs such as fuel, oil, lube, twine, etc., and labor for the operation.

Some custom rates published in this study vary widely, possibly influenced by:
- Type or size of equipment used (e.g. 20-shank chisel plow versus a 9-shank)
- Size and shape of fields,
- Condition of the crop (for harvesting operations)
- Skill level of labor
- Amount of labor needed in relation to the equipment capabilities
- Cost margin differences for full-time custom operators compared to farmers supplementing current income

Some custom rates reflect discounted rates as the parties involved have family or community relationships. Discounted rates may also occur when the custom work
provider is attempting to strengthen a relationship to help secure the custom farmed land in a future purchase, cash rental or other rental agreement. Some providers charge differently because they are simply attempting to spread their fixed costs over more acreage to decrease fixed costs per acre and are willing to forgo complete cost recovery.

New this year, the number of responses for each operation has been added to the data presented. In cases where there were too few responses to statistically analyze, summary statistics are not presented. Charges may be added if the custom provider considers a job abnormal such as distance from the operator’s base location, difficulty of terrain, amount of product or labor involved with the operation, or other special requirements of the custom work customer.

The data from this survey are intended to show a representative farming industry cost for specified machines and operations in Ohio. As a custom farm work provider, the average rates reported in this publication may not cover your total costs for performing the custom service. As a customer, you may not be able to hire a custom service for the average rate published in this factsheet.

It is recommended that you calculate your own costs carefully before determining the custom rate to charge or pay. It may be helpful to compare the custom rates reported in this fact sheet with machinery costs calculated by economic engineering models available online. The following resources are available to help you calculate and consider the total costs of performing a given machinery operation.
Farm Machinery Cost Estimates, available by searching University of Minnesota.

Estimating Farm Machinery Costs, available by searching Iowa State University agriculture decision maker and machinery management.

Fuel price changes may cause some uncertainty in setting a custom rate. Significant volatility in diesel price over the last several months has caused some concern for custom rate providers that seek to cover all or most of the costs associated with custom farm operations. The approximate price of diesel fuel during the survey period ranged from $4.50 – $5.25 per gallon for off-road (farm) usage. As a custom farm work provider, if you feel that your rate doesn’t capture your full costs due to fuel price increases you might consider a custom rate increase or fuel surcharge based on the increase in fuel costs.

For example, let’s assume the rate you planned to charge for a chisel plow operation was based on $4.50 per gallon diesel costs and the current on-farm diesel price is $5.50.
per gallon. This is a $1 per gallon increase. The chisel plow operation uses 1.15 gallons of fuel per acre so the added fuel surcharge could be set at $1.15 per acre (1.15 gallons x $1 gallon).

The complete “Ohio Farm Custom Rates 2022” publication is available online at the Farm Office website: https://farmoffice.osu.edu/farm-management/custom-rates-and-machinery-costs

The Heat is On and the Algae Loves It!

By: Richard Purdin, OSU ANR/CD Educator, Adams County

Source: https://u.osu.edu/beef/2022/07/20/the-heat-is-on-and-the-algae-loves-it/

If the water doesn’t look appealing for you to drink, don’t expect your livestock to drink it.

July got off to a hot and dry start for much of Ohio and for livestock managers this brings on added chores on the to do list to keep livestock healthy and productive. Water is the source of life and I often preach on the importance and the critical role it plays in animal health. When livestock have clean fresh water to always drink, they will better consume feed and forage and absorb it nutrients more efficiently. More adequate water consumptions can equate to better rate of gain, increased fertility and reproductive performance, increased milk production and weaning weights, and much more benefits. When water is not available or the tainted in anyway livestock will avoid drinking or try to find water in other areas, this can have a detrimental effect on animal health and should be priority for managers to prevent. There can be multiple factors that lead to water be tainted or unpleasant for livestock consumption but one of the most common factors during the summer is the build up of algae growth in water tanks, troughs, or reservoirs.

Keeping algae out of the livestock drinking facilities can be a big challenge. Algae in livestock water tanks is not just a nuisance but it can also be toxic to livestock. There are different types of Algae that can grow and thrive in livestock water tanks, warm weather, livestock saliva, sunshine, and introduction of organic matter or manure can provide a perfect growing condition for algae. There are several different types of algae that can be found growing in livestock water tanks but one that get the most attention is the blue green algae or also called cyanobacteria. This type of algae can be toxic to livestock causing symptoms of blue green algae toxicosis. Symptoms of blue green algae toxicosis include muscle tremors, bloody diarrhea, seizures, excessive salivation, and liver failure. Steps should be taken to maintain a clean water supply for livestock no
matter what time of year it is but it is especially important during the hot summer months. Livestock will refuse to drink water with high population of algae, and this can lower overall animal performance and put their health in jeopardy. Some steps to take to maintain a clean water supply and reduce algae growth include.

- Routinely drain and clean water facilities with a scrub brush.
- Put up railing or barriers along water tanks, this will help eliminated feces and urine from entering the tank or watering area.
- Placing water tanks in shady areas can reduce algae growth. Watering facilities in shady areas also have cooler water temperatures reducing growth.
- Think about types of water tanks or troughs used, rubber tanks stay cooler than concrete or steel tanks.
- Monitor water PH. Algae prefers water ph. levels around 8.0-8.5, maintain water ph. levels between 6.5-7.0 can help reduce algae growth.
- Disinfect often- using regular home grade unscented bleach at a rate of 2-3 oz per 50 gallons of water can be used and safe for livestock.
- Copper sulfate products can be mixed and used in larger facilities or ponds to reduce algae growth.

In summary algae growth in livestock watering facilities should not be overlooks or ignored, taking time to prevent and clean watering facilities on a routine basis should be toward the top your to do list. On my farm I have set a day in my weekly schedule to drain and clean water tanks, this has also allowed me to observe my livestock’s drinking habits and amount water consumed. Remember, if the water doesn’t look appealing for you to drink, don’t expect your livestock to drink it, grab the brush and happy cleaning!

Other helpful resources
- https://www.aces.edu/blog/topics/beef/keeping-it-clean-livestock-water-tank-maintenance/
- https://burke.ces.ncsu.edu/2016/05/controlling-algae-in-livestock-water-tanks/
- https://afs.ca.uky.edu/dairy/harmful-algal-blooms-are-my-cattle-danger
We’re Hiring! SNAP-Ed Program Assistant

• Use standardized curriculum materials to teach food, nutrition, food resource management, and other related topics to low-income adults, youth, and/or families as part of the Education branch of the Supplemental Nutrition Assistance Program (SNAP-Ed) in a variety of community settings.
• Use standardized evaluation instruments to assess program participants’ knowledge, skills, attitudes, and behaviors to determine educational needs and impacts.
• Refer program participants to appropriate assistance programs.
• Recruit adults for the program by collaborating with community agencies and programs, as well as using other tools of promotion.
• Recruit youth for the program by collaborating with schools serving 50% or more free and reduced meals.
• Support target-audience and nutrition-related policy, systems, and environmental (PSE) interventions in the community.
• Participate in staff development and training opportunities to enhance knowledge of nutrition topics and successful methods for nutrition education.
• Regular travel will be required throughout the county from the county Extension office and occasionally to the state office and other regional locations around the state.
• This is a grant-funded position which is renewable by the sponsor agency and by OSU Extension.

Location: Position is located in Jefferson, Ohio with additional duties in neighboring Geauga county.
Salary: $16.00 Hourly
Hours: Regular, Full-time
Posting #: R54121
Deadline to Apply: 8/5/2022

Interested applicants should apply at: https://hr.osu.edu/careers. Click on “Non-Ohio State Employees” and search for R54121.
Position Opening: SNAP-Ed Program Assistant, Ashtabula County

Summary of Duties:

Use standardized curriculum materials to teach food, nutrition, food resource management, and other related topics to low-income adults, youth, and/or families as part of the Education branch of the Supplemental Nutrition Assistance Program (SNAP-Ed) in a variety of community settings.

Use standardized evaluation instruments to assess program participants’ knowledge, skills, attitudes, and behaviors to determine educational needs and impacts.

Refer program participants to appropriate assistance programs.

Recruit adults for the program by collaborating with community agencies and programs, as well as using other tools of promotion.

Recruit youth for the program by collaborating with schools serving 50% or more free and reduced meals.

Support target-audience and nutrition-related policy, systems, and environmental (PSE) interventions in the community.

Participate in staff development and training opportunities to enhance knowledge of nutrition topics and successful methods for nutrition education.

Regular travel will be required throughout the county from the county Extension office and occasionally to the state office and other regional locations around the state.

This is a grant-funded position which is renewable by the sponsor agency and by OSU Extension.

Position Details:

Location: Position is located in Jefferson, Ohio with additional duties in neighboring Geauga County.
Salary: $16.00 Hourly
Hours: Regular, Full-time
Posting #: R54121
Closing Date: 8/5/2022

Interested applicants should apply at: https://hr.osu.edu/careers. Click on “Non-Ohio State Employees” and search for R54121.

This institution is an equal opportunity provider. This material was funded by USDA’s Supplemental Nutrition Assistance Program – SNAP.
OHIO STATE UNIVERSITY PRESENTS

2022 Grape Field Day: Mulch and Mutton

Join The Ashtabula Agricultural Research Station, Ohio State Extension, and the OSU Small Ruminant Team for a day of education and in field demonstrations! Two alternative practices will be covered, Vineyard Mulching and Vineyard Grazing with Sheep or Goats.

Schedule of Events:
10:30 AM – Mulching Demonstration at Ferrante Vineyard
11:30 AM - 12:15 PM – Lunch at Ferrante or elsewhere (Not included)
1:00 PM – Mulching demonstration from Finn Machinery and Dami lab prototype unit at Ashtabula Ag Research Station
2:00 PM – Vineyard Sheep Grazing Demonstration and Presentations from OSU Ruminants Team
3:00 PM – Grower panel on sheep grazing in vineyard

This event is FREE to attend. Lunch is not provided, but available at Ferrante for purchase.
Registration is not required but appreciated: go.osu.edu/gfd22

Special Thanks to: Ferrante Winery, OSU Viticulture Team, and the OSU Ruminants Team
Ohio Certified Volunteer Naturalist Training

Hosted by:
Ohio State University Extension Offices of Ashtabula and Trumbull Counties

What is OCVN:
The OCVN program is a research-based education program of The Ohio State University offered in partnership with several host locations, such as, park districts and OSU Extension offices. The OCVN program emphasizes hands-on natural resource and environmental education coupled with volunteer service. Participants in the OCVN program receive 40 hours of combined classroom and field instruction. Upon completing the OCVN course, participants provide 40 hours of volunteer service at any Ohio organization with a compatible program mission.

The 40-hour instruction course will be offered as a combination of online and in person programming. The course will include readings, discussion forums, quizzes, optional homework, and live Zoom sessions. There are two field days at the Camp Whitewood and Trumbull County Extension Office/ Mosquito Lake State Park.

OCVN Mission:
To promote awareness and community stewardship of Ohio’s natural resources through science-based education and community service.

Training starts September 27th and ends November 13th with zoom trainings each Tuesday from 6:00 – 9:00 PM and two all day Saturday trainings on October 8th & 29th

Spaces in the 2022 course will be filled on a first-come, first-served basis. Course size is limited so please contact us as soon as possible if interested.

You must be at least 18 years old to apply.

Total Cost: $250

https://go.osu.edu/ocvn22

ocvn.osu.edu
Ohio Certified Volunteer Naturalist Course

The mission of the Ohio Certified Volunteer Naturalist (OCVN) program is to build awareness of Ohio’s environment and natural resources through science-based education and community stewardship.

The OCVNs role is to support partners in meeting the needs of our citizens in the area of natural resources by assisting with educational programs.

Activities Include:
• Identifying and educating the public about invasive species
• Diagnosing plant problems
• Giving public presentations relating to nature
• Hosting events for the public
• Staffing educational booths and other various opportunities

Program Benefits:
• Learn about the biology, ecology and natural history of Ohio from many of the state’s leading experts.
• Become part of a local and statewide network of dedicated volunteers.
• Apply your talents and passion to protecting, restoring and understanding Ohio’s natural treasures.

If you have a strong interest in nature and enjoy helping others, you are invited to apply to become an Ohio Certified Volunteer Naturalist.

Starts August 31st!
OCVN Training

The course sessions are taught by faculty and staff with The Ohio State University along with conservation and naturalist professionals throughout Ohio.

Topics include:

• Soil, Geology and Watersheds
• Ecology and Stewardship
• Botany & Forests
• Entomology & Herpetology
• Ornithology & Mammals
• Working with the public & communication skills

You will learn how to contribute to community science efforts, restore and protect critical habitats, and communicate effectively about Ohio’s’ environment while exploring parks and natural areas near you.

Application Process

• Spaces in the class will be viewed on a first-come, first-served basis.
• Class size is limited to 25 participants.
• You must be at least 18 years old to apply.

Registration is $225.00 due within two weeks of admission to the program. The price includes a binder manual, additional handouts, state fees and related costs for conducting the program.

To apply go to https://osu.edu/portageocvn2022 or scan the QR code.

Return applications by August 3rd to Portage County Extension Office, 705 Oakwood St. Suite 103, Ravenna, OH 44266. Please make checks payable to OSU Extension.

Certification Requirements

To become an Ohio Certified Volunteer Naturalist, you must:

✓ Complete 40 hours of combined classroom and field instruction
✓ Perform 40 hours of approved volunteer service within the first year
✓ After certification, 20 hours of volunteer service and 8 hours of advanced training are required annually
Do you have a home, yard, or garden question? Need expert advice but don’t know where to turn?

Call the Ashtabula County Master Gardener Hotline!

Starting May 2nd until October 31st
Every Monday, 9 AM to Noon and every Thursday, 1 PM to 4 PM

To contact the Hotline, call 440-576-9008

Call during listed hours to speak with a volunteer or call anytime and leave a message. The hotline can be also be reached via email at Ashtabula.1@osu.edu and in person by stopping in at the Ashtabula OSU Extension Office – 39 Wall St. Jefferson, Ohio 44047.

For your home horticultural question call the Master Gardener Hotline today!