It is officially the last day of our soggy month of June. Boy was this past weekend a soggy one! I think we all are glad to see the month of June come to an end. The excessive rainfall has really hampered crop growth, hay harvest and weed control. I hope it straightens out as we move into July. We have a sold out camp of just under 200 youth ages 8-14 at 4-H Camp Whitewood this week. The rain showers have not slowed them down. Here is hoping that July’s weather treats us a lot better.

David Marrison, AG Educator

In this Issue:
- Enrollment for the 2016 Dairy Margin Protection Program to Begin July 1, 2015
- Northeast Ohio Agronomic Crops Report
- Western Bean Cutworm Traps Set Out Across Ashtabula & Trumbull Counties
- Prospects for “Muddied Corn”
- NEW! Soybean and Small Grain Website (stepupsoy.osu.edu)
- Late Harvest and Grain Quality Concerns
- Giant Hogweed in Bloom Across Ashtabula County
- A 4-R Program for Summer Grazing
- Creep Feeding Beef Calves
- Vegetable of the Week- Sweet Corn (Zea mays)

Enrollment for the 2016 Dairy Margin Protection Program to Begin July 1, 2015

Agriculture Deputy Secretary Krysta Harden announced that starting July 1, 2015, dairy farmers can enroll in the U.S. Department of Agriculture’s (USDA) Margin Protection Program for coverage in 2016. The voluntary program, established by the 2014 Farm Bill, provides financial assistance to participating dairy operations when the margin – the difference between the price of milk and feed costs – falls below the coverage level selected by the farmer. Harden made the announcement while visiting Wolfe’s Neck Farm and dairy school in Freeport, Maine.

"More than half of our nation's dairy producers enrolled in the 2015 program, which exceeded our expectations for the first year of the program," said Harden. "We are confident that dairy farmers across the country will again take advantage of this safety net program for 2016. USDA will continue outreach efforts, including partnering with cooperative extension services, to ensure dairy producers are fully informed about the protections that this safety net program can provide during periods of market downturns."

The Margin Protection Program gives participating dairy producers the flexibility to select coverage levels best suited for their operation. Enrollment begins July 1 and ends on Sept. 30, 2015, for coverage in 2016. Participating farmers will remain in the program through 2018 and pay a $100 administrative fee each year. Producers also have the option of selecting a different coverage level during open enrollment each year. Margin Protection Program payments are based on an operation’s historical production. An operation’s historical production will increase by 2.61 percent in 2016 if the operation participated in 2015, providing a stronger safety net.
USDA also has an online resource available to help dairy producers decide which level of coverage will provide them with the strongest safety net under a variety of conditions. The enhanced Web tool, available at www.fsa.usda.gov/mpptool, allows dairy farmers to quickly and easily combine their unique operation data and other key variables to calculate their coverage needs based on price projections. Producers can also review historical data or estimate future coverage based on data projections. The secure site can be accessed via computer, mobile phone, or tablet, 24 hours a day, seven days a week.

Dairy operations enrolling in the program must meet conservation compliance provisions. Producers participating in the Livestock Gross Margin insurance program may register for the Margin Protection Program, but this new margin program will only begin once their Livestock dairy insurance coverage has ended. Producers must also submit form CCC-782 for 2016, confirming their Margin Protection Program coverage level selection, to the local Farm Service Agency (FSA) office. If electing higher coverage for 2016, dairy producers can either pay the premium in full at the time of enrollment or pay a minimum of 25 percent of the premium by Feb. 1, 2016.

The Margin Protection Program was established by the 2014 Farm Bill, which builds on historic economic gains in rural America over the past six years, while achieving meaningful reform and billions of dollars in savings for the taxpayer. Since enactment, USDA has made significant progress to implement each provision of this critical legislation, including providing disaster relief to farmers and ranchers; strengthening risk management tools; expanding access to rural credit; funding critical research; establishing innovative public-private conservation partnerships; developing new markets for rural-made products; and investing in infrastructure, housing and community facilities to help improve quality of life in rural America. For more information, visit www.usda.gov/farmbill.

For more information, visit FSA online at www.fsa.usda.gov/dairy for more information, or stop by a local FSA office to learn more about the Margin Protection Program. To find a local FSA office in your area, visit http://offices.usda.gov.

Northeast Ohio Agronomic Crops Report
By Les Ober CCA, Geauga Co. OSU Ext. (June 29, 2015)

Another weeks starts and another 3 inch of rain falls. In many places across NE Ohio crops fields have gone beyond the point saturation. Totaling up the rain over the last 4 weeks in Burton we are now over 8 inches and counting. With rain in the forecast for the next several days it does not look like things will be getting better anytime soon. As a result there are some serious agronomic problems to deal with.

If you are a wheat producer you should be within 10 day to two week from harvest. Rain has caused some problems. You need to scout your fields now to access possible damage. In the western part of the state wheat is now ready to harvest and grain quality issues are abundant. Here is what they are finding; As a result of high humidity and excessive rainfall Fusarium Head Scab is showing up and with it the possibility of volmitoxin formation. Even if you do not have head scab you can have a volmitoxin problem and the only way to identify that problem is to test the wheat after it is harvested. For those of you with crop insurance this testing needs to be done at the elevator. If the elevator docks you for any quality issue you need to take and hold on to a sample from that load for future testing by the insurance company. If you have a load of wheat rejected then a sample needs to be sent to your crop insurance company immediately. If you are binning the wheat at your home farm then you need to keep samples of that wheat taken at harvest time. Sampling the wheat 4 months down the road and finding a problem will not substantiate a claim made on a bin of bad or toxic wheat. Also be aware it may not be a disease problem that causes dockage in wheat. One of the most prevalent problems in past wet years has been sprouting. All of the above can lead to problems when you sell your wheat. There is not a lot you can do but you must take every precaution to make sure you protect you crop insurance coverage.
Loss of nitrogen in corn has been covered in this blog extensively over the last couple of weeks. If you have not been able to side-dress your corn then you may have several options. The ground will have to dry before ground equipment can be used. That will put you in a position of having to apply N to very tall corn. If you are fortunate enough to own one of the newer high clearance self-propelled sprayers you can dribble on UAN liquid. This is a very good way to apply N in a narrow band on top of the ground next to the corn. You may notice some burning of the corn leaves at that this stage of growth as it is very hard to not splash liquid N on the leaves. However, the corn will quickly recover. Another method would be to custom apply Urea over the top of the row using a high clearance self-propelled ground applicator with a dry box. The local coops have several of these rigs in operation around the area. If you decide to use Urea make sure that you include a nitrogen stabilizer in the application. This will stabilize the urea to prevent volatilization. If you spread urea without a stabilizer and it does not rain within 24 hours you stand to lose N. This may seem like a very expensive way to apply N but once the corn gets to V-10- V12 it may be the only option. Application fees will be around 10 to 12 dollars per acre. This is only 4 bushels of corn at $3.00. The loss from not putting on N could be as high as 50 bushels to the acre.

Soybeans: the issue will not only be disease problems caused by excessive moisture but weed control. Right now many of the late planted fields did not get sprayed for weeds. This will require beefing up the spray program once the ground is dry enough to get on

Agronomic Crops Progress Report

Corn: Most corn is at V-8. If the corn is on poorly drained soils or has not had Nitrogen applied it is probably in the poor to fair category. If it is growing on well drained or tiled ground it actually look good to very good. How well corn responses to additional N that has been applied or will be applied will determine how good it yields. In the western part of the state some corn is now showing signs of Northern Leaf Blight and or Gray Leaf Spot.

Soybeans: Soybeans do not like wet feet and most of the crop has wet feet. This has caused some damping off and other root diseases. A big concern in the very near future will be the inoculation of plants with White Mold Spores. This occurs at flowering which is only a couple weeks away. Not much you can do except to hope it dries out and that you selected the right resistant variety.

Wheat: Hold your breath because as I listed above there are multiple things that can go wrong when you get this much moisture this late in the season on wheat. When the opportunity comes to harvest wheat make it you first priority.

Forages: At this point the ground is to wet to cut hay and preserving top quality is no longer possible. Harvest as soon as you can and get ready for second cutting.

Oats: oats are now heading and should be good if it dries out

Prospects for “Muddied Corn”

By Peter Thomison

During the past two weeks, flooding and ponding have occurred across Ohio, especially in river bottoms and along streams. In some localized areas, this may have resulted in partial and complete immersion of corn in nearby fields, especially in low spots. When water drains off these fields, plants may be covered to varying degrees with a layer of mud. Will corn plants covered by a layer of mud survive and can it perform normally? The layers of silty mud covering plants will limit or prevent leaf photosynthesis. Bacteria deposited in leaf whorls by flooding can result in disease and kill plants. On the positive side, most corn in Ohio was at a stage of growth less vulnerable to flood damage when it
occurred. Corn planted before mid-May was well beyond V6 (the six leaf collar stage) when the growing point is at or above the soil surface and less sensitive to flooding and associated anaerobic soil conditions. If the duration of flooding was brief, limited to several hours, and temperatures were moderate, damage should be minimal. Moreover, if corn was subjected to flooding at mid-vegetative stages of development, most leaves on affected plants should not be severely impacted by the mud coatings (assuming that mud in the whorl does not inhibit normal emergence of subsequent leaves). Corn plants produce up to 21 leaves, so at V10, about half the corn leaves have yet to emerge from the whorl. The leaves that have yet to emerge are the most important for the corn plant because the upper canopy produces most of the corn plant’s yield potential. According to the National Crop Insurance Service’s defoliation charts, complete leaf loss at about V10 results in 28% yield loss. However, it’s unlikely that the photosynthetic capacity of leaves has been completely destroyed in plants covered with mud. Rain forecast later this week will wash silt off leaves allowing for resumption of photosynthesis. It will also help wash mud out of leaf whorls allowing new leaves to emerge.

Western Bean Cutworm Traps Set Out Across Ashtabula & Trumbull Counties

Last Thursday, Jennie Pugliese, our summer agronomy intern, and I placed out Western Bean Cutworm traps across Ashtabula and Trumbull counties. This will be the fifth year in which we are part of a state-wide monitoring program for the Western Bean Cutworm. This corn pest just recently has become a concern in northeast Ohio so its biology and economic impact are something we are just learning about.

The western bean cutworm has been historically found in the western Corn Belt, where it was a common pest of dry beans and a sporadic pest of corn. Starting in the year 2000, economic damage from this pest was found on corn in Iowa and Minnesota. Since then, this pest has continued to rapidly spread eastward, reaching Ohio in 2006. The easiest way to monitor the presence of this pest is trapping of the adult moths.

During early July through early August, the adult moths will fly into Ohio and will lay eggs on the upper leaves of the corn plants, and once the eggs hatch, larvae begin feeding on the tassels silks or ears of the corn. Depending on the crop’s growth stage, yield losses can be significant.

In our monitoring for western bean cutworm adults, 6 traps were placed in various locations across the region. Thank you to Howard Seavey, Joel Baldwin, and Tony Stocker for allowing me to place traps on their property in Ashtabula County for this research. These traps will be checked weekly during our summer growing season. Last year we found 1,044 moths in the Ashtabula County traps. These numbers were significantly higher when compared to previous years so it will be interesting to see the results this year.

More information about the Western Bean Cutworm can be found at: http://ohioline.osu.edu/ent-fact/pdf/0040.pdf. This factsheet can also be obtained by calling the Ashtabula County Extension office at 440-576-9008.

NEW! Soybean and Small Grain Website (stepupsoy.osu.edu)

By Laura Lindsey

The soybean and small grain production lab has gone digital. For information on research results, news, and upcoming events in the soybean and small grain lab visit stepupsoy.osu.edu. You’ll also see the faces of technicians, graduate students, and undergraduates in the soybean and small grain production lab. (They are the ones behind all research efforts!). You can also follow us on Twitter @stepupsoy to see what is going on in the field.
Late Harvest and Grain Quality Concerns
By Pierce Paul and Laura Lindsey

Wheat harvest will likely be late again this year. Physiologically, the crop is now ready for harvest in some fields, but will likely not be harvested until the first or second week of July or even later. Late harvest coupled with excessive rainfall mean more time for late-season mold growth, mycotoxin accumulation, test weight reduction, and sprouting, all of which collectively could result in poor overall grain quality.

Test weight (grain weight per unit volume or grain density) is one of the grain quality traits most likely to be affected by harvest delay and wet conditions. Low test weights usually occur if grain is prevented from filling completely or maturing and drying naturally in the field. Rewetting of grain in the field after maturity but prior to harvest is one of the main causes of reduced test weight. When grain is rewetted, the germination process begins, causing photosynthates (i.e., starch) to be digested. This leaves small voids inside the grain which decreases test weight.

Additionally, grain will swell each time it is rewetted and may not return to its original size as it dries which will also reduce test weight. Thus the enlarge kernels will take more space but weigh the same, allowing fewer kernels to pack in the measuring container, lowering the test weight.

Rain and harvest delay may also lead to pre-harvest sprouting in some varieties. Sprouting is characterized by the swelling of kernels, splitting of seed coats, and germination of seeds (emergence of roots and shoots) within the wheat heads. Some varieties are more tolerant to sprouting than other, and for a given variety, sprouting may vary from one field to another depending on the duration of warm, wet conditions. Sprouting affects grain quality (test weight). Once moisture is taken up by mature grain, stored reserves (sugars especially) are converted and used up for germination, which leads to reduced test weights. Even before visual signs of sprouting are evident, sugars are converted and grain quality is reduced. Since varieties differ in their ability to take up water, their drying rate, the rate at which sugars are used up, and embryo dormancy (resistance to germination), grain quality reduction will vary from one variety to another.

In addition to sprouting, the growth of mold is another problem that may result from rain-related harvest delay. To fungi, mature wheat heads are nothing more than dead plant tissue ready to be colonized. Under warm, wet conditions, saprophytic fungi (and even fungi known to cause diseases such as wheat scab) readily colonize wheat heads, resulting in a dark moldy cast being formed over the heads and straw. This problem is particularly severe on lodged wheat. In general, the growth of blackish saprophytic molds on the surface of the grain usually does not affect the grain. However, the growth of pathogens, usually whitish or pinkish mold, could result in low test weights and poor overall grain quality. In particular, in those fields with head scab, vomitoxin may build-up to higher levels in the grain, leading to further grain quality reduction and dockage. While vomitoxin contamination is generally higher in fields with high levels of wheat scab, it is not uncommon to find above 2 ppm vomitoxin in late-harvested fields that have been exposed to excessive moisture. Even in the absence of visual scab symptoms, the fungi that produce vomitoxin may still colonize grain and produce toxins if harvest is delayed.

To minimize grain quality losses, it is best to harvest wheat on the first dry-down. Harvesting at a slightly higher moisture level (18% for example) may also be useful for minimizing quality losses, particularly those associated sprouting and mold growth due to rainfall and harvest delay. However, if grain is harvested at moisture above 15%, it should be dried down below 15% before storage to minimize mold growth and mycotoxins in storage.

Giant Hogweed in Bloom Across Ashtabula County
While Jennie and I were out putting up the Western Bean Cutworm Traps, we noticed that Giant Hogweed is in full bloom right. We have been warning residents about this noxious weed for close to a decade now. So what is the hazard of this plant?
This plant is a public health issue because of its potential to cause severe skin irritation. This plant causes painful, burning blisters within one to two days of contact. These purplish or brownish scars can persist for several years.

This huge plant is a member of the carrot or parsley family and was introduced into Europe and North America in the early 1900s. This plant is most easily identified by its large clusters of small flowers that appear around the beginning of July. These flowers cluster together to form a topped umbrella shape that can span close to three feet across. This plant can grow up to fifteen feet in height and have a four inch stem. Its hollow stem has distinct purple blotches with coarse white hairs that circle the stem at the base of the leaf stalks.

The leaves are lobed, deeply incised and can measure up to five feet across. This plant's name comes from Hercules of ancient mythology. Because of its massive size and appearance, this plant was cultivated and transferred between many arboreums and personal gardens. Unfortunately, this plant has spread from these gardens and has become established in roadside ditches, stream banks, vacant farmland, and along tree lines.

In the United States, it is known to occur in at least eleven states and is now listed as a Federal Noxious Weed making it unlawful to propagate, sell or transport. Our neighbors in Pennslyvania have become the hot spot for this weed. To date, Giant Hogweed has been spotted in Andover, Austinburg, and Jefferson Townships and in the heart of Ashtabula Harbor in Ashtabula County.

Many folks confuse this plant with cow parsnp (Heracleum lanatum), Angelica (Angelica atropurpurea) or Poison Hemlock (Conium maculatum). You are cautioned about mowing, cutting or weed wacking this plant as its large taproot will soon send up new growth. Additionally, it will place you in risk of coming in contact with the plant's sap.

More information about this dangerous weed can be at: http://ashtabula.osu.edu/program-areas/agriculture-and-natural-resources/giant-hogweed-resources.

I wrote a comprehensive factsheet on this plant for Ohio State and the link to this factsheet can be found there or at: http://ashtabula.osu.edu/sites/ashtabula/files/imce/Program_Pages/ANR/Hogweed/OSUGiantHogweedFactsheet.pdf

A 4-R Program for Summer Grazing
By Rory Lewandowski, Extension Educator Wayne County

With the arrival of summer we can generally expect warm to hot temperatures and less frequent rainfall. The vast majority of pastures managed for grazing in our area are composed of cool season grass species that grow best when temperatures are cool to warm and moisture is plentiful. Thus, we have the summer slump in pasture productivity. Although summer weather conditions are not conducive to high yields with cool season grasses there are some grazing management practices that can help to increase summertime productivity. These practices can be summarized as the four "R's".

The first "R" is remove seed heads. Clipping off seed heads in late June will return grass plants to vegetative growth and improve the quality of the forage that is grazed.

The second "R" is right starting height. Do not let livestock into a pasture paddock where grass height is too short because this is almost certain to lead to overgrazing. What is the right height? It depends upon the predominant grass in the pasture mix. Perennial ryegrass should be grazed when it reaches the 6 to 8 inch height. Orchardgrass and endophyte free or novel endophyte tall fescue grass should be grazed starting at an 8 to 10 inch height. Endophyte infected tall fescue and Kentucky bluegrass should be grazed when the height reaches 5 to 6 inches.
The third "R" is residual leaf area. Do not overgraze pasture paddocks. Pull livestock out of pasture paddocks while there is still sufficient leaf area for the plant to continue to photosynthesize. The general principle that is taught in grazing schools is to take half the plant and leave half the plant. Leaving sufficient leaf residual has several benefits. When more than half the plant is grazed or clipped off root growth is drastically affected and the plant takes longer to recover from defoliation. Leaving half the plant allows root growth and function to continue with very minimal reduction and the plant recovers rapidly from the grazing defoliation. Leaving more residual leaf area helps to shade the soil. In the summer heat this can mean cooler soil temperatures and less moisture loss from the soil, important considerations to keep grass growing. In general, do not graze below 3 inches in height for perennial ryegrass, below 4 inches in height for orchardgrass, endophyte free or novel endophyte tall fescue and do not graze below 2 inches in height for Kentucky bluegrass and endophyte infected tall fescue.

The fourth "R" is rest period. After a grazing pass allow enough time for that plant to regrow back to the right grazing height. The length of this rest period is affected by how much leaf residual has been left, the air and soil temperature, and soil moisture. Summer pasture rotations need to slow down because the grass is growing slower. For example, during the favorable temperatures and moisture conditions of spring and early summer grass is growing fast and it may have been possible to get back to a pasture paddock within an 18 to 25 day period for another grazing pass. In the summer the rest period required for that same plant to regrow to the right grazing height may be anywhere from 30 to 50 or more days. During drought conditions plants may stop growing. In this case, the only way to avoid overgrazing is to stop rotating between paddocks and keep livestock in a sacrifice area. The only way to maintain the longer rest periods needed during summer weather is to have enough pasture paddocks or divisions. Most of the experienced graziers that I know have at least 10 pasture paddocks or run multiple pasture divisions as they strip graze across a pasture. I have yet to hear an experienced grazier say that they regret putting in another pasture division or paddock.

Summer weather can negatively affect cool season pastures, but following good grazing management practices can minimize those negative effects.

Creep Feeding Beef Calves

by Rick Rasby, University of Nebraska-Lincoln Extension

The primary objective of the management practice of creep feeding is to put additional weight on the calves economically before weaning without making the calves fleshy. Fleshy calves are usually discounted in market price. To creep or not to creep is an economic decision to increase profit potential for the cow/calf enterprise. Situations where creep feeding appears to be economical is when feed costs are low and market price of calves at weaning is high. An important component to determining whether creep feeding is economical is to determine the value of the added gain.

The most common creep feed is high in energy and about 16% crude protein. Data would suggest that high energy creep will result in the greatest weight gain. Calves will

* eat about 3.2 pounds per head daily (range 2 to 6.5 lb/hd/day - depends on length of the creep feeding period),
* have a gain to feed ratio of 1 pound of gain to 6 pounds of creep (range - 1:4 to 1:10), and
* increase ADG of 0.3 pounds (range - 0.15 to 0.65 pound increase in ADG) compared to non-creep fed calves.

Creep feeding does not reduce lactation pressure of the dam like one might expect. In addition, there are data suggesting that creep feeding has a positive effect on carcass quality. The effect of creep feeding on carcass quality is influenced by the length of the creep feeding period and type of creep feed fed. Creep feeding can also be used to introduce calves to feed they will be fed at weaning time which can smooth the transition to the new ration.
Calculate value of added gain. Following is how to calculate value of the added gain. As the weight of beef calves increases, their value on a $/pound or $/cwt basis decreases. In other words, the price per pound for calves that weigh 500 pounds is less than for calves that weigh 400 pounds. This is important to understand because the added calf weight from creep feeding cannot be priced at market value.

As an example, if 500-pound calves sell for a calf price for $2.80/lb and 560-pound calves sell for $2.70/lb the value of the added 60 pounds is $1.86/lb.
1.500 lb x $2.80/lb = $1,400
2.560 lb x $2.70/lb = $1,512
3. $1,512 - $1,400 divided by 60 lb (which is the weight difference) = $1.86 per pound

If the calves gain 60 extra pounds when they are creep fed and it takes 6 pounds of creep to produce a pound of calf gain, it would take 360 pound of creep feed (60 lb of gain x 6 = 360 lb).

If the cost of the creep feed is $300 per ton ($0.15/lb), the cost of feed to put on the 60 pounds of weight is $54 (360 pounds of creep feed x $0.15 = $54). The dollars generated from the 60 pounds due to creep feed is $111.60 (60 lb of calf gain due to creep x $1.86 value of added gain = $111.60).

The return to creep feeding is + $57.60 ($111.60 - $54 = $57.60). The return from creep feeding in this example includes only feed and no labor and equipment.

Do the calculations with your numbers. Remember, when determining costs for creep feeding, include not only feed costs, but equipment (creep feeder, tractor, and wagon with an auger to fill the feeder if not done by the creep supplier), and labor costs.

Vegetable of the Week- Sweet Corn (Zea mays)
By Erik Draper, draper.15@osu.edu

One of the vegetables most anticipated and prized from the garden or local farm markets is the warm-season vegetable we call sweet corn. Corn, also called maize, is native to the Americas and has been cultivated in Central America since 3500 BC! Sweet corn cultivars vary in days to maturity and are classified as early (55 - 70 days), mid-season (71 - 85 days) and late (85 - 100 days). Typically the days to maturity also reflects the size of the ear of corn with early being the smallest (6 - 8") and late-season being the largest (10 - 12").

Corn types also come in varieties consisting of white, yellow or bi-color kernels and usually are designated as normal sugary (su), sugary enhanced (se), supersweet or "shrunken two" (Sh2). Normal sugary (su) sweet corn converts the sugar in the kernel to starch immediately upon being harvested; consequently, this type of sweet corn must be cooked immediately after picking or all of the "sweet" is rapidly lost. Sugary enhanced (se) varieties contain more sugars than "su" types and if refrigerated, will remain sweeter for 2 - 4 days following harvest, due to that high sugar content. Supersweets (Sh2) are so named because the sugar content can be two to three times that of "su" sweet corn when mature. Another advantage for Supersweet types is that they also slow the conversion of sugar to starch so that the sweetness will persist much longer. In fact, if cooled and refrigerated properly, these "Sh2" varieties can remain sweet up to 10 days following harvest! The down side of "Sh2" varieties is they need to be isolated from other type of corn tasseling at the same time to ensure their sweetness and tenderness. If they are not isolated, their weak pollen is easily superseded by the pollen of other corn types, which results in the kernels developing a flavor and consistency equal to field corn!

Remember when planting sweet corn that it is wind pollinated so plant the corn close together in blocks rather than in long rows. Sweet corn needs all of the sunlight available in a day and the old adage of "sidedress or fertilize corn
when it is knee high or by the 4th of July" really applies this year because all of the rain has leached the nitrogen away from the corn. Then wait for it to ripen, apply butter and ENJOY!!

**

PLEASE SHARE...this newsletter with farmers or others who are interested in agricultural topics in Ashtabula & Trumbull Counties. Past issues can be located at: https://go.osu.edu/ag-news. Please tell your friends and neighbors to sign up for the list. CONTACT: marrison.2@osu.edu

**

Readers can subscribe electronically to this newsletter by sending an e-mail message to: marrison.2@osu.edu. If you would like to opt-out of receiving this newsletter, please e-mail marrison.2@osu.edu with the words: UNSUBSCRIBE

THE OHIO STATE UNIVERSITY
COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

**