Hello Northeast Ohio Counties!

Snow fell in pretty good amounts today with maybe an inch in southern Trumbull to over twelve inches in the snow belt. Looks like we may have some non-snowy weather ahead with frozen ground to help with corn harvest though.

Harvest has progressed rapidly in the last two weeks. I am guessing Trumbull is about 90% done on beans and maybe 50% on corn. Moisture is still being stubborn, but I’m hearing 18-19% at harvest so we’re close!

Stay safe out there in the cold and with the icy roads!

Lee Beers Andrew Holden
Trumbull County Ashtabula County
Extension Educator Extension Educator
Dean Foods Goes Bankrupt: To Sell Assets
By Corey Geiger
Source: https://hoards.com/article-26672-dean-foods-goes-bankrupt-to-sell-assets.html

America’s top fluid milk processor — Dean Foods — initiated voluntary Chapter 11 reorganizational proceedings in the Southern District Court of Texas on November 12, 2019. The company intends to use this process to protect and support its ongoing business operations and address debt and unfunded pension obligations.

Dean Foods has 65 plants in 29 states across the country. It employs 15,000 people. That combination of processing capacity, employees, and output makes Dean Foods the largest processor and direct-to-store distributor of fresh fluid milk and other dairy case products in the United States.

To keep the business running post-November 12, Dean Foods has received a commitment of approximately $850 million in debtor-in-possession financing from certain existing lenders led by Rabobank, Dean Foods stated in a press release. As for its demise . . . lost sales, aging plant infrastructure, and issues related to product innovation all were catalysts that led to the bankruptcy declaration, if one would ask leading dairy analysts.

The next step for Dean Foods is working toward an orderly and efficient sale of the company founded in 1925 by Samuel Dean Sr., who started out with an evaporated milk processing facility in Franklin Park, Ill.

That sale could take up to a year to complete based on statements issued by Dean Foods.

The likely buyer?
Dairy Farmers of America (DFA) — the nation’s largest dairy cooperative — has engaged in advanced discussions on purchasing the fluid milk processor. That national...
milk marketing organization has 14,500 dairy farmer members across 48 states that collectively ship 52.7 billion pounds of milk. That represents 24 percent of the U.S. milk supply.

Dairy farmer members of 14,500, contrasted to member farms, is a different number. According to the October 10, 2019, issue of *Hoard’s Dairyman*, DFA had 8,019 member farms that hold permits to sell milk. Dairy farmer members includes multiple family members as dairy farms grow in size.

DFA would become the winning bidder for Dean Foods only after regulatory approval and would be subject to higher or otherwise better offers in bankruptcy. Stated more plainly, DFA is the likely buyer for Dean Foods' assets after bankruptcy proceedings close.

The decision to buy Dean Foods likely came down to this fact, “As Dean Foods is DFA’s largest customer, our focus is ensuring we have a secure market for our members’ milk.” That statement came from Monica Massey, executive vice president and chief of staff for Dairy Farmers of America.

“Thanks to the strategic planning and management by our farmer board of directors and management team, the cooperative is in a financial position to withstand a situation like this,” continued Massey.

Payment for milk
Dairy farmers who were direct shippers to Dean Foods will be asking, “Will I get paid for my milk?”

After the November 12 filing date, the answer is straight forward — “We intend to pay suppliers in full under normal terms for goods and services provided on or after the filing date.”

The potential payment prior to the pre-November 12 bankruptcy filing is dicey — “Under U.S. law, unpaid debt for goods and services provided to Dean Foods prior to the filing date, also known as ‘pre-petition claims,’ generally cannot be paid without specific court approval.” Dean Foods later added in a comment section, “We sincerely regret any inconvenience this may cause.”

Sales down 37 percent
Dean Foods had hung its hat on being the king of fluid milk processing. To reach the zenith, it purchased regional brands at the speed of light. As a result, the company based in Dallas, Texas, garnered $12.4 billion in sales in 2008.
Since then, it’s been all downhill, with sales skidding to $7.7 billion in 2018. That represented a 37 percent free fall in just one decade ($12.4 billion to $7.7 billion in sales).

The new year didn’t start out any better. First-quarter sales in 2019 fell 9 percent from a year earlier to hit $1.8 billion. That was far below most analyst predictions and on pace for a $7.2 billion figure when extended over the entire year.

This situation caused some top talent to flee. Ralph Scozzafava had been the CEO for four years. Eric Beringause took over the reins in August.

The CFO Dean Foods had hired last year, Jody Macedonio, stepped down in late September. Gary Rahlfs became the interim finance chief.

In May 2013, Dean Foods stock traded for over $40 per share. In October 2018, it had slid to $8. On Monday, November 11, before filing bankruptcy, it fetched $1 per share.

Once king of milk mountain
In 2007, Dairy Foods magazine ranked the conglomerate as America’s leading dairy company. That year it had $11.8 billion in sales. By 2018, Dean Foods had slipped to No. 3, as Nestle USA and its parent company Nestle of Switzerland rank No. 1 with $14.1 billion in sales. Holding No. 2 is Saputo Inc. based in Montreal, Quebec, Canada, with $8.3 billion in sales.

Fluid milk at its core
In addition to specializing in fluid milk, Dean also focused on volume to compete. That model became vulnerable when key accounts, such as Walmart and the company that owns the Food Lion chain, cut ties with Dean Foods and made the decision to process their own milk.

The situation became so dire that Dean Foods “would consider a sale, going private, selling assets, forming a joint venture, or pursuing a merger,” wrote Heather Hadden in a February 28, 2019, article in The Wall Street Journal. Dean Foods tied its hands to some degree in the February debt restructuring when it added real estate property as collateral against its debt. That move gave lenders the right to some proceeds if assets are sold. It also gave the milk giant less flexibility in future business moves.

This decision set the course for the November 12 court filing in the Southern District of Texas based on the case report for Southern Foods Group, LLC d/b/a Dean Foods.

More competition
Most dairy market analysts would concur that Dean Foods has not done enough to to
innovate. While it did consolidate many of its regional brands into its DairyPure brand, what's in the container — fluid milk — remains largely the same. DairyPure holds about 10 percent market share nationally.

In five years, fairlife — an innovative competitor to Dean Foods — grew sales from zero to $450 million, noted a leading dairy industry source in a November 2 article in The Wall Street Journal. That fairlife product has 50 percent more protein and half the lactose (milk sugar) than traditional bottled milk.

As this and other innovations took place, Dean Foods just kept trudging forward.

And today, it stands in financial ruin.

Ohio Corn Harvest May Continue as a High Moisture Corn Harvest

By: Elizabeth Hawkins, Jason Hartschuh, CCA

When the calendar flipped from October to November the weather changed in a big way. Over the next 10 days, temperature predictions are highs in the 40’s and lows in the 20’s. These conditions make it much more difficult to field dry corn creating a need to send high moisture corn to the dryer. Currently only 37% of the corn crop has been harvested compared to a 5 year average of 56% Using a dry down calculator from Iowa State (https://crops.extension.iastate.edu/facts/corn-drydown-calculator), we can estimate how quickly corn will dry in the field. Based on the forecast, if your corn is at 30% moisture now, in 10 days it will be about 25% moisture and by the end of the month it may reach 21%. If our current moisture is 25%, in 10 days it will be about 22% moisture and by the end of the month it may reach 20%. When looking at these numbers, it seems like corn is field drying well. However, if we look at the forecast for corn at 20% now, the calculator predicts a moisture loss of less than half a point over the next 10 days and less than a point by the end of the month. Keep in mind, these are median predictions and if the weather model changes, we could see more-or-less field dry down.

As the weather turns cooler, it can become much more difficult to manage wet grain. It also becomes more difficult to determine moisture since most moisture meters are not accurate when grain temperature falls below 40 F. In order to get an accurate moisture estimate, put a grain sample in a sealed container and let it warm to room temperature.
and retest moisture. It is also recommended that you allow the corn coming out of the
drier to cool to room temperature before testing moisture, especially if the tester is kept
in a cool area. Also, keep in mind that you may need to adjust harvest logistics to
account for longer transport times since corn above 28% moisture may freeze together
and corn between 24-27% moisture often binds and will not flow properly from wet
storage bins and trucks.

Now comes the challenges of drying high moisture corn in high temperature dryers. The
high moisture corn will spend more time in the dryer, increasing its chances of
browning. The high temperature air over a longer period during fast drying and cooling
often creates stress cracks and broken kernels leading to a lower test weight and issues
with storage. Most high temperature dryers are run at about 210 F. One way to reduce
kernel damage in wet grain is to decrease the temperature below 200 F even though it
will take longer to dry. Unfortunately, lower temperatures are not as efficient at drying. It
takes 4,000 BTU to remove a pound of water at 150 F but only 2800 BTU at 200 F.
Keeping dryer plenum temperatures as high as possible without damaging grain is
ideal. Monitor the grain coming from the dryer for cracks and decrease temperatures
until quality is maintained. As temperatures decrease below 40 F, the chances of
condensation forming when hot grain is put into storage bins increases. Grain coming
out of a high temperature dryer should be at 90-100 F to reduce the condensation
potential. If your bins have large enough aeration fans, cooling the rest of the way in bin
can also help improve grain quality. When hot grain is fully cooled to 30 or 40 F, the
amount of stress cracks increases. During cooler temperatures it is even more
important that the corn is cooled at its fill rate or faster. It takes an air flow rate of 12 cfm
per bushel coming into the bin in an hour to keep up with cooling.

Increased dryer condensation can also cause issues. As the condensation cools during
freezing night time temperatures, vents may become iced over decreasing efficacy and
causing damage. If you are using a dryer bin, these vents freezing over could cause
roof damage. To avoid this, leave all access doors open or close with an elastic strap
that can act as a pressure relief.

If your corn crop was frost killed, another layer of challenges has been added. When
corn is frost injured, a moisture tester will often read lower than actual grain moisture.
The outer portion of the kernel dries faster than the interior. This grain is usually 1-2%
wetter, even after drying than your moisture tester reads. In order to handle this, grain
needs dried to 12-13% and fully cooled. It also takes more energy per percent moisture
to dry this grain. Frost killed corn will have a lower test weight decreasing storage life.
Across the Midwest, more corn has been coming off wet using high quantities of propane and starting to cause shortages in some areas. While there is not a lot you can do about the supply side, you could contact your propane supplier about how much more gas you may need this fall. While each drier and temperature has a different efficacy, a common estimate is that it takes 0.02 gallons of propane to remove 1% point from a bushel of grain. If your corn is averaging 25% at harvest, you will need to remove 9.5% to dry it to 15.5% taking 0.19 gallons of propane per bushel or 190 gallons per 1000 bushels.

Even after drying, high moisture corn often has more fines due to more aggressive shelling and drying. These fines increase storage issues leading to corn going out of condition sooner. The fines can fill in voids deceasing airflow, causing hot spots and increased potential for insect damage. These fines can cause issues in the dryer leading to a greater potential for dryer fires. This can be managed in a couple ways.

Fines produced in the combine can be removed using a drum grain cleaner before the grain enters the dryer. The high moisture corn is often much more fragile after drying so even if combine fines are removed, there is still a major concern for in bin fines. The first step to protecting damaged grain from insects is to cool it below 20-25 F, for most insects. Make sure the grain is cooled throughout by taking temperatures 12 inches into the grain at the top from multiple areas of the bin. After cooling bins, they should be cored to remove fines that accumulated in the center of the bin. During coring, about half of the peak in the bin should be removed creating a cone. If a cone is not created, the grain is bridging, and you should NOT ENTER the bin. If you have multiple bins, it is recommended that you sell the corn that was dried from the highest moisture first.

For the producers who use natural air drying, this will be much more complicated as air temperatures fall below 40 F. When temperatures are in the 30 to 40 F range, it will take over 2 months for this corn to dry in the field. In bin drying should not be attempted if corn is over 20% moisture. Below 20% moisture, the grain can be cooled to 20-30 F using aeration and left in the bin until spring temperatures are over 40 F and can be dried at that point. This grain should not be stored any longer than absolutely necessary after drying in the spring. Adding heat to natural drying bins can improve drying, but only slightly. The greatest improvement in natural drying time comes from increasing airflow.
Adding heat can allow the final moisture of corn to improve on average due to higher relative humidity. If you can naturally dry corn in the winter it is only to about 16%.

For more information visit:

https://crops.extension.iastate.edu/blog/charles-r-hurburgh-mark-licht/harvest-consideration-frost-killed-corn

Where’s the Bean? Missing Seed in Soybean Pods

By: Andy Michel, Kelley Tilmon

Source: https://agcrops.osu.edu/newsletter/corn-newsletter/2019-38/where%E2%80%99s-bean-missing-seed-soybean-pods

Stink Bug Damage to Soybean (photo courtesy of ocj.com)
As soybean harvest progresses, a few growers are noticing poor yields in otherwise nice-looking plants and pods. While a visual inspection might lead to high estimations of seed quality, the inside may contain shrunken, shriveled or, even worse, missing seed. Stink bugs can often cause this type of injury to soybean seed. They have piercing sucking mouthparts that poke through the pod wall, and then feed directly on the seed. Because their mouthparts are small, damage to the pod is often undetected.

However, opening a few pods may reveal poor seed quality evident of stink bug feeding. We have seen increasing issues with stink bugs in Ohio. This past season was no exception and we will likely continue to see issues in the future.

For more information on stink bug identification, scouting and resources, see our agronomic crops insects webpage: https://aginsects.osu.edu/home

Corn, Soybean, and Wheat Yield Trends by Ohio County, 1972-2018

By: Carl Zulauf, Robert Dinterman, and Ben Brown

Click here to access full report complete with figures
Yield growth is the primary source of increased production of crops in Ohio and most of the US. Most land that can be cropped is being cropped. Understanding historic yield trends is thus important to an informed understanding of Ohio agriculture. This article examines trends in corn, soybean, and wheat yields since 1972 at the Ohio state level and across Ohio counties. These three crops composed 87% of Ohio harvested crop acres in the 2017 Census of US Agriculture. Trend yield is higher for corn than soybean and wheat, both in terms of bushel / acre and percent of yield. Trend yields vary across Ohio counties, particularly for corn. Implications are drawn for Ohio crop agriculture, with a particular point of interest being the implication for the CAUV (Current Agricultural Use Value) program that taxes farm land at its agricultural use value rather than its appraised value.

Analysis: Yield per harvested acre is analyzed. Source for the data is USDA, NASS (US Department of Agriculture, National Agricultural Statistics Service). The analysis starts with the 1972 crop and ends with the 2018 crop. It spans 47 years that include periods of prosperity, financial stress, and tight profit margins. Not all counties have 47 years of observations for each crop. It was decided a county should have at least half or 24 years of observations to be included in the analysis. This decision reflects (1) consideration of the power of statistical tests, (2) that 24 years is a “natural break” in the distribution of number of county yield observations, and (3) a feeling that it seems
reasonable to require yields for at least half of all years in order to have confidence in a county’s estimated trend yield. Counties with 24 years of harvested yields total 86, 78, and 69 for corn, soybeans, and wheat, respectively. The county yield trends were tested for statistical difference from the yield trend for Ohio. For additional discussion of the analytical procedures, see the Data Note.

Corn Yield Trend: Ohio linear corn yield trend is +1.76 bushel / year over 1972-2018 (see Figure 1). In comparison, average of the 86 county yield trends estimated for corn is +1.62 bushel / year. Since the state yield is the average of county yield weighted by the amount of production in the county, the higher state trend yield suggests counties with more corn production had a higher yield trend.

County corn yield trend ranged from +0.66 (Carroll County) to +2.14 (Clinton County) (see Figures 1 and 2). When examining the range of values, it is useful to assess if the extreme values are outliers. Examination of the county corn yield trends suggests that both Carroll and the county with the next lowest trend (Belmont – +0.71) are outliers as the next lowest yield trend is +1.09 for Monroe County.

Individual county yield trends were tested for statistically significant deviation from Ohio’s yield trend (see Date Note). Thirty-five (41%) of county corn yield trends deviated from the state yield trend with the commonly-used 95% level of statistical confidence (see Figure 2). Corn yield trend was above (below) the state corn yield trend in 9 (26) counties. It was thus almost three times more likely for statistically significant county yield trends to be below than above the Ohio trend yield. Counties with a statistically significant lower trend have a tendency to be in eastern Ohio (see Figure 2). Statistically significant higher corn yield trends have a tendency to be in southwestern and central Ohio.

Soybean Yield Trend: Ohio linear soybean trend yield is +0.48 bushel per year over 1972-2018, the same as the average of the 78 county trend yields estimated for soybeans (see Figure 3). Unlike corn, this comparison does not suggest county soybean yield trend varied with amount of county production.

County soybean yield trend ranged from +0.23 (Lawrence County) to +0.59 (Fairfield County) (see Figures 3 and 4). Lawrence County may be an outlier as the next lowest soybean yield trend was Summit County at +0.30 bushel per year. Statistically significant deviation from the state yield trend was far less common for soybeans than corn. Only 10 (13%) of county soybean yield trends deviated from the state yield trend with 95% statistical confidence (see Figure 4). Five were below and 5 were above the state trend. The small number of counties with statistically significant deviations from the state yield trend calls for caution in making regional categorization of these deviations. Given this caveat, the 5 counties with trend yield above the Ohio trend yield are in central Ohio.
Wheat Yield Trend: Ohio’s linear wheat yield trend is +0.76 bushel per year over 1972-2018, nearly identical to the average of the 69 county yield trends estimated for wheat (see Figure 5). Similar to soybeans and unlike corn, this comparison does not suggest wheat county yield trend varied with amount of county production. County wheat yield trend ranged from +0.38 (Carroll County) to +0.98 (Pickaway County) (see Figures 5 and 6). There did not appear to be any obvious outlier county wheat yields.

Twenty (29%) of the county wheat yield trends deviated from Ohio’s wheat yield trend with 95% statistical confidence (see Figure 6). As with corn, it was more common for a county yield trend that differed from the Ohio yield trend with statistical significance to be above than below Ohio’s trend (13 vs. 7). No clear regional category of deviations from the state wheat trend yield is apparent. Counties with significant deviations from the state trend are dispersed across Ohio (see Figure 6).

Comparing Yield Trend across Crops: Comparing yield trend across corn, soybeans, and wheat is complicated by their different yield levels. Given the use of regression analysis, one useful measure of yield level is the estimated intercept value for 1972. These intercepts for Ohio corn, soybeans, and wheat are 87, 29, and 40 bushels/acre, respectively. Taking the ratio of Ohio trend yield to the Ohio intercept finds that yield grew fastest for corn (2.0%) and slowest for soybeans (1.7%) (see Figure 7). The difference may seem small, but it is an annual difference that has extended over 47 years.

Another useful comparison is to examine the relative variation in county yield trends by crop. One such measure is the ratio of the standard deviation of county yield trends to the average county yield trend. Using the values in Figures 1, 3, and 5, the so-called coefficient of variation ratio is 18% for corn, 12% for soybeans, and 16% for wheat. Eliminating the two outlier county yield trends for corn reduces its coefficient of variation to 15%. The coefficient of variation thus suggests that soybean yield trends varied less across Ohio counties than did corn and wheat yield trends.

Summary Observations:
► Linear yield trend is higher for Ohio corn than soybeans, with wheat in between.
► Among the three crops, soybean yield trends differ the least across Ohio’s counties.
► County yield trends are more likely to deviate from Ohio’s yield trend with statistical significance for corn than for soybeans.
► Only readily-apparent regional patterns in yield growth are a higher probability of slower yield growth for corn in eastern Ohio and faster yield growth for corn in central and southwestern Ohio.
► Corn’s differential yield trends have likely differentially impacted profitability of crop agriculture across Ohio’s counties.
► Statistically significant differences in county yield growth from state yield growth pose a potential policy issue for Ohio’s CAUV (Current Agricultural Use-Value)
Northeast Ohio Agriculture OHIO STATE UNIVERSITY EXTENSION
Ashtabula and Trumbull Counties

Program. CAUV determines assessed value for a majority of agricultural land in Ohio. It uses a net-income approach partially based on a soil type’s yield potential for corn, soybeans, and wheat. Potential yield for a soil type partially comes from the state’s most recent comprehensive soil survey (Zobeck, Gerken, and Powell, 1983). This yield value, from the early 1980s, is then adjusted based on the state-wide trend in harvested yield for each of the three crops. The significant differences between county and state-wide yield trends raises the potential issues of whether or not the use of state-wide yield trends to adjust a soil productivity index dating to the early 1980s continues to be appropriate policy and thus if an update of the soil productivity index may be an appropriate policy option.

Data Note: The statistical method used for this analysis is multiple linear regression. Unit of observation is a county-year in Ohio from 1972 to 2018. Statewide yield is included as well. Dependent variable is county yield (for corn, soybeans, or wheat) for a given year. It is regressed on time, measured as a count of years starting with 1972 equal to zero. A county specific intercept and a county specific annual trend are estimated. The statistical test of interest is if a county specific annual yield trend is statistically different from the statewide annual yield trend for a given crop. Since the county specific annual trend and statewide annual trend are both estimated coefficients, an F-Test is constructed with the null hypothesis that the two trend coefficients are equal to each other. An F-test rejection of a null hypothesis is a function of both the difference between the two estimated coefficients and the estimated standard error of the coefficients.

References and Data Source:

Farm Bill Meetings to be held across Ohio
By: David Marrison
Source: https://u.osu.edu/ohioaqmanager/2019/11/11/farm-bill-meetings-to-be-held-across-ohio/

Click here for complete article with locations of meetings
Ohio State University Extension and the USDA Farm Service Agency in Ohio are partnering to provide a series of educational Farm Bill meetings this winter to help producers make informed decisions related to enrollment in commodity programs. The 2018 Farm Bill reauthorized the Agriculture Risk Coverage (ARC) and Price Loss Coverage (PLC) safety net programs that were in the 2014 Farm Bill. While the ARC
and PLC programs under the new farm bill remain very similar to the previous farm bill, there are some changes that producers should be aware of.

Farm Bill meetings will review changes to the ARC/PLC programs as well as important dates and deadlines. Additionally, attendees will learn about decision tools and calculators available to help, which program best fits the needs of their farms under current market conditions and outlook.

Enrollment for 2019 is currently open with the deadline set as March 15, 2020. Enrollment for the 2020 crop year closes June 30, 2020. Producers can enroll for both 2019 and 2020 during the same visit to an FSA county office. Producers have the opportunity to elect to either ARC or PLC for the 2019 to 2023 crop years, with the option to change their program election in 2021, 2022, and 2023. To find out about upcoming meetings, and get information about the Farm Bill, visit go.osu.edu/farmbill2019
ARC/PLC Public Meeting

In conjunction with OSU Extension, we will be conducting a PUBLIC Meeting for Trumbull, Portage & Summit Counties to inform you about the new ARC/PLC programs that have been authorized by the 2019 Farm Bill. We will be sharing information on what the programs are all about, how they might affect you and what decisions you will need to make, like change yields and which program to enroll in for the 2019 and 2020 Crop years. Meeting dates are as followed:

Please Call 330-637-2046 opt 2 to make your reservation for which meeting is best for you to attend

<table>
<thead>
<tr>
<th>Trumbull County Office</th>
<th>Portage County Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>520 W. Main Street, Cortland OH</td>
<td>6970 St. Rt 88, Ravenna OH</td>
</tr>
<tr>
<td>Monday, November 18, 2019 1:00pm</td>
<td>Tuesday, November 19, 2019 1:00pm</td>
</tr>
<tr>
<td>Monday, November 18, 2019 6:00pm</td>
<td>Tuesday, November 19, 2019 6:00pm</td>
</tr>
</tbody>
</table>

RSVP BY NOVEMBER 8, 2019
Space is limited
USDA is an equal opportunity provider and employer.
Upcoming Events

November 18, 2019 1:00pm or 6:00pm
ARC/PLC Public Meeting – Trumbull Co.

November 19, 2019 1:00pm or 6:00pm
ARC/PLC Public Meeting – Portage Co.

December 9, 2019 1:00pm
ARC/PLC Public Meeting – Ashtabula Co. Extension Office

January 15, 2020 11:30AM
Trumbull Farmer Lunch Series – Hemp: What You Need to Know

February 12, 2020 11:30AM
Trumbull Farmer Lunch Series – Grass Waterways for Erosion Control

March 11, 2020 9AM to 3PM
Northeast Ohio Agronomy School – Bristolville, OH

April 15, 2020 11:30AM
Trumbull Farmer Lunch Series – Cover Crops – A Farmer Discussion
2019 Annual Meeting – Open House & Election

Friday, November 15, 2019
Free & open to the public
Light Refreshments will be provided
RSVP at 330-637-2056, opt. 3

Trumbull Co. Agriculture &
Family Education Center
520 W. Main Street
Cortland, OH 44410

Schedule of Events

8:30 am – 1:00 pm – Absentee Voting,
Coffee & Conservation

4:00 pm – Regular Board Meeting

5:00 pm – 6:30 pm – Supervisor
Election

5:00 pm – Program begins

5:30 pm – Presentation of
Conservation Awards

MEET THE CANDIDATES
Jessica King, Jason R. Lee,
Bill Zuga

Candidate bios and voter
information available onsite
and online.
Fruit Grower
Blueberry and Blackberry program

Tuesday, November 12th
6:00-9:00 pm

Location: Lorain County Extension
42110 Russia Rd. Elyria, OH 44035

Cost: $20.00 program*

This is the meeting for commercial blueberry and raspberry/blackberry growers in the region. Take some time to meet and network with other growers--large and small, experienced and new. The group represents growers in multiple counties. If you are currently growing or considering growing blueberries, raspberries or blackberries this meeting is for you. It, however, is not intended for hobby or home-growers.

Presenters:
James Jasinski, Associate Professor, Integrated Pest Management Program Coordinator – Spotted Wing Drosophila monitoring efforts and updates on pesticide and exclusion
Doug Doohan, Professor, Department of Horticulture and Crop Science – Weed management in blueberries and brambles
Timothy J Malinich, Assistant Professor, OSU Extension of Erie County – Blueberry and blackberry nutrient management
Ann M. Chanon, OSU Extension of Lorain County – Pesticide mix considerations and jar tests

Seating is limited, register early.
Available Credit: 1 hr. private PAT, fruit and vegetable (category 3)
*An extra $5 fee will be charged for credit

To register, complete the below form and mail it and payment to:
OSU Extension, Lorain County 42110 Russia Rd, Elyria OH 44035
Make checks payable to OSU Extension

Registration
Name(s) ____________________________ Company ____________________________
Address __________________________________ Phone ____________________________
Zip _______________________________ E-mail _______________________________
Program Only $20 [] PAT Credit $5 [] Total ________
Program Outline (continued)

Krauss Dairy Center

1:00 – 3:30 pm Afternoon Program
(15 min/station, 5 min transition)

Reducing Risks of IMI in the Parlor (new parlor) – Dr. Ben Enger

Nutrient Management (feeding area) – Dr. Chanhee Lee

Managing Grazing Systems (grazing area) – Mike Sword & Dr. Tony Parker

Managing for Animal Comfort (flexible free stalls) – Dr. Shaun Wellert

Dealing with the 2019 Forage Crisis (forage storage area) – Dr. Bill Weiss

Calf Management (calf area) – Dr. Maurice Eastridge

Accelerating Genetic Progress (Tie stall area) – Royce Thornton

Strategies for Making Critical Financial Decisions (entrance area) - Rory Lewandowski & Dianne Shoemaker

Register and put the event on your calendar TODAY!
Thursday, November 14

Purpose of program:

1) Address some of the key issues impacting the dairy industry
2) Share research results conducted at Ohio State
3) Introduce Ohio State faculty and staff to the dairy industry
4) Highlight some changes in dairy facilities on the Wooster campus

Program Outline

Secrest Welcome and Education Center

9:30 – 10:00 am
Registration and Refreshments

10:00 – 12:00 Morning Program

10:00 am
Welcome, Dr. John Foltz, Chair, Department of Animal Sciences

10:15 – 10:45 am
Roadmap to the Top Third: The 15 Measures of Dairy Farm Competitiveness, Dianne Shoemaker, Ohio State University Extension

10:45 – 11:15 am
A New Approach for Determining Metabolizable Protein Requirements of Lactating Cows, Dr. Luis Moraes, Department of Animal Sciences

11:15 – 11:45 am
Nutrient Management from Feed to Manure, Dr. Chanhee Lee, Department of Animal Sciences

11:45 – 12:00
Wrap-Up and What’s Next Instructions

Lunch (provided; posters on display by graduate students)

Registration

DUE Thursday, October 31

There is no registration fee for those who register by October 31. After October 31, the fee is $25 per person or $100 per farm.

Registration fee includes refreshments, lunch, and handouts.

Indicate the type of registration:

- Registration by October 31 ($0)
- Individual Registration after Oct. 31 ($25)
- Farm Registration after Oct. 31 ($100)
- Exhibit (table and electricity provided; $200)

**Make check payable to: The Ohio State University

Name: _________________________________

Farm/Company: _________________________

Number attending: ____

Address: _______________________________

City: _____________State: ___ ZIP: _____

Phone: ____________________

Email: ____________________

Register online at dairy.osu.edu or mail registrations to:

Dr. Maurice Eastridge
Department of Animal Sciences
2029 Fyffe Court
Columbus, OH 43210
614-688-3059, eastridge.1@osu.edu

Register TODAY!