A climatologist that I heard speak in Iowa a few years ago said that we would be in a pattern of extremely volatile weather for the next two decades. He mentioned that “one average, our weather will be average.” But he said our weather would have wide extremes. I think he was correct as this year; we have gone from extremely wet weather in June to a drought in July and August to a 4 inch rain event this past weekend. At the end of the year, I bet our year’s precipitation will be right on average. But the extreme weather is causing havoc on our agricultural crops. It will be interesting to see what our fall weather will be like for harvest. Any guesses?

David Marrison, AG Educator

In this Issue:
- Northeast Ohio Fall Twilight Beef Tour to be held on October 1, 2015 in Trumbull County
- Northeast Ohio Agronomic Crops Report- September 15
- Weather Outlook for the Last Half of September
- Wheat Management for Fall 2015
- Combine Adjustments for 2015 Soybean Harvest
- Preparation of Storage Facilities for Grain Harvest
- Grazing Harvested Corn Residue, a Feed Alternative
- Ashtabula County 4-H Fall Festival to be held on October 6, 2015
- Ashtabula County Farm Bureau and Ashtabula County Soil & Water Conservation District Banquet to be held on September 21, 2015
- Ashtabula County Plat Directories Available
- OSU Searching for OSU Extension Educator for Trumbull County
- Research Specialist / Research Station Manager Sought by OARDC For Ashtabula Ag Research Station in Kingsville, Ohio
- Farm Science Review Tickets Available at OSU Extension Offices and On-Line
- Vegetable of the Week - Turnip (Brasicca rapa)

Northeast Ohio Fall Twilight Beef Tour to be held on October 1, 2015 in Trumbull County

OSU Extension and the Ashtabula County Cattlemen’s Association would like to invite beef producers to attend the 2015 Northeast Ohio Fall Twilight Beef Tour from 6:30 to 8:00 p.m. at Novak Town Line Farm in Burghill, Ohio (Trumbull County). Ron Novak purchased his first Angus heifer in 1961 and has grown his herd to now include over 40 purebred Angus cows & heifers. Bull calves are raised and commercially sold across the country. 73% of the herd is bred artificially and the herd maintains a 374 day calving interval.

During the tour, participants will learn more about the development of 80 acres of intensively grazed pastures which are accessed by a 16 foot lane which stretches over 3,300 feet. Learn how water hydrants have been placed every 200 feet to supply water to each paddock. Participants will see how easily the cows are moved through the electric fence from the lane to each paddock.
Participants will also learn how customized color coded Ritchey Livestock tags are used to track the genealogy of each cow and how the Novak’s winter house their animals, both inside and outside. Learn how embryos transplants, synchronized breeding, and semen testing are being utilized. This tour will provide a lot of great ideas for Northeast Ohio beef producers to take back to their operations.

Dress for the weather as the tour will be held rain or shine! The farm is located on State Route 7, 2.4 miles south of State Route 88 (Vernon) and is on the southwest corner of Bradley Brownlee Road and Route 7. If traveling from the south, the farm is 2.6 miles north of State Route 305 (Hartford).

All-beef hamburgers and hotdogs prepared by Cherry Valley Processing will be served at the conclusion of the program. All northeast Ohio and northwest Pennsylvania beef producers and industry people are invited. This Twilight tour is sponsored by the Ashtabula County Cattlemen’s Association, OSU Extension, and Novak Town Line Farm. No reservations are needed. For more information or for directions call the OSU Extension office (Ashtabula County) at 440-576-9008.

Northeast Ohio Agronomic Crops Report- September 15
By Les Ober CCA & Geauga County- OSU Extension

It is now mid-September the fairs are over and the Farm Science Review is one week away. For grain and livestock farmers this has been a tough a year. However, the one bright spot may be that grain harvest will be early this year. For corn, we have reached 2600 Growing Degree Days which is enough to finish out most of the hybrids used in this area. After walking through several corn fields over the last few days most have reached or are about to reach black layer or physical maturity. The ears are starting to hang down and I would say most of the kernels are in the 30 to 40 percent moisture range. This means that at least some of the corn will be harvested before the end of the month. This is probably a good thing because stalk strength is not the best and many field s may fall victim to lodging when the November winds arrive. This is the result of poor root structure and nitrogen loss due to the wet weather in June. Early harvest of these fields will be a must to avoid yield loss. We will also be witnessing varying degrees of ear size and kernel fill due to the dry August weather. This will be especially evident in late planted corn.

On the Soybean side August was either rough or kind to soybeans depending on the amount of moisture you received on your farm. It appears that soybeans are shorter than normal but they seem to caring a good number of pods. I believe soybean yields will be about normal for this area with early planted beans slightly above and late planted beans below average. Where excessive moisture occurred and stayed, there will be spots in the field that are way below normal and other spots that remained dry that will be above normal. The only way to determine yield under these kinds of conditions is to harvest the crop. As for disease and insect pressure I have seen very little. The dry weather of August all but stopped any White Mold that may have occurred. It was the perfect example of the disease triangle where we have a disease pathogen that is always present and susceptible varieties of beans are used. All we needed was for the wet damp conditions to continue into August and it did not happen. On the insect side we did get an outbreak of soybean aphids but once again it came at the end of season and economic threshold levels were not reached before the crop was mature enough to handle them. I t was evident due to the sooty appearance of the pods that during the R-6 stage of growth there were good numbers of aphid present. Once again due to advance in maturity and good numbers of beneficial insects this was of no consequence.

The biggest problem was weed control in soybean and corn fields. With the extensive wet weather and high winds we had in June, spraying was almost impossible. The result was poor control of troublesome weeds like Marestail.
The weeds just got ahead of the control effort and they are doing well in many fields. This means that next year will require a special effort to eradicate these weeds out of your fields. At the beginning of next week I will the annual weed survey for Mark Loux. If you see a Gray Ford Pickup parked next to your soybean field do not be alarmed it will be me doing our annual weed survey. In the next edition I will go over what I found and outline several ways to address weed control problems next season. I will leave you with an article form last week’s CORN by OSU Corn Specialist Peter Thomison on the effects of weather on this year’s corn crop.

Growing Season Adversely Affected Ear Development by Peter Thomison
Excessive rainfall (which contributed to N loss and poor root development) followed by late season drought had a major impact on ear and kernel formation in many Ohio corn fields this year. Poor ear and kernel development is associated with variability in plant growth within fields that is related to differences in the timing and duration of soil saturation. In some areas within fields subject to protracted saturated soil conditions, ears are absent (“barren”) or severely reduced in size with a few scattered kernels (nubbin ears). Affected plants often appear stunted and yellow due to N loss and restricted shallow root systems. Where the impact of excessive moisture was less pronounced and plant height and color look normal or near normal, ear cob size may be normal but kernel number is markedly reduced. No kernels may be evident on the last two or more inches of the ear tip. Several factors may cause this problem. The ovules at the tip of the ear are the last to be pollinated, and under the stress conditions only a limited amount of pollen was available to germinate late emerging silks. Pollen shed was complete or nearly complete before the silks associated with the tip ovules emerge. As a result, no kernels formed at the ear tip. Uneven soil conditions and plant development within fields may have magnified this problem. Pollen feeding and silk clipping by corn rootworm beetles and Japanese beetles can also contribute to pollination problems resulting in poorly filled tips and ears.

Incomplete ear fill may also be related to kernel abortion. If plant nutrients (sugars and proteins) are limited during the early stages of kernel development, then kernels at the tip of the ear may abort. Kernels at the tip of the ear are the last to be pollinated and cannot compete as effectively for nutrients as kernels formed earlier. Although we usually associate this problem with drought conditions, the stress conditions that occurred this year, such as N deficiency, excessive soil moisture and foliar disease damage, may cause a shortage of nutrients that lead to kernel abortion. Periods of cloudy weather following pollination, or the mutual shading from very high plant populations can also contribute to kernel abortion. Some agronomists and farmers characterize the kernel abortion that occurs at the end of the ear as “tip dieback”, “tip-back”, or “nosing back”, although poor pollination is also usually a factor affecting poor kernel set at the tip. Kernel abortion may be distinguished from poor pollination of tip kernels by color. Aborted kernels and ovules not fertilized will both appear dried up and shrunk; however aborted kernels often have a slight yellowish color.

Zipper ears are another ear development problem evident in some fields. Zipper ears exhibit missing kernel rows (often on the side of the cob away from the stalk that give sort of a zippering look on the ears”). The zippering is due to kernels that are poorly developed and/or ovules that have aborted and/or not pollinated. Zippering often extends most of the cob’s length and is often associated with a curvature of the cob, to such an extent that zipper ears are also referred to as “banana ears”. For more on these ear development problems and others ear abnormalities, check the following: “Troubleshooting Abnormal Corn Ears” available online at http://u.osu.edu/mastercorn/

Weather Outlook for the Last Half of September
By Jim Noel

The second half of September will continue to experience above normal temperatures and close to normal rainfall. Second half of September RISK:
Temperatures - Above Normal (+3-5F) - Normal highs are in the 70s and lows in the 50s.
Rainfall - Near Normal (0.5-1.5 inches) - Normal is about 0.6 inches per week.
Freeze - Below normal - Little if any expected.

The NOAA/NWS/Ohio River Forecast Center 16-day rainfall outlook suggests the wettest areas will remain west of Ohio. This trend will continue into October where wet conditions could hamper harvest especially west of Ohio. http://www.erh.noaa.gov/ohrfc/HAS/images/NAEFS16day.pdf

October is shaping up to be above normal temperatures and near or slightly wetter than normal. Based on historic El Nino events, freeze conditions typically arrive a little later than normal so expect a week maybe two weeks of delay to freeze this fall.

October RISK:
Temperatures - Above Normal (0-+3F)
Rainfall - Near or slightly above normal.
Freeze - Below normal - Expect a later than normal freeze. Normally Oct. 10-20 across much of the state.

With a significant El Nino expected this fall and winter, everything suggests warmer conditions with below normal precipitation western Ohio and normal precipitation in eastern Ohio.

Wheat Management for Fall 2015
By Laura Lindsey, Pierce Paul, and Ed Lentz

Wheat helps reduce problems associated with the continuous planting of soybean and corn and provides an ideal time to apply fertilizer and manure, condition the field, and plant cover crops after harvest. With soybean harvest beginning, we would like to remind farmers of a few management decisions that are important for a successful wheat crop.

1.) Optimum seeding rates are between 1.2 and 1.6 million seeds per acre. For drills with 7.5-inch row spacing this is about 18 to 24 seeds per foot of row with normal sized seed. When wheat is planted on time, actual seeding rate has little effect on yield, but high seeding rates (above 30 seeds per foot of row) increase lodging and the risk of severe powdery mildew development next spring. During the 2014-2015 with funding from the Ohio Small Grains Marketing Program, we conducted a wheat seeding rate study at three locations in Ohio (Crawford, Pickaway, and Wood Counties). We seeded wheat at 0.25, 0.50, 1.0, 1.5, and 2.0 million seeds/acre. On average, there was a 9 bu/acre yield reduction when seeding rate was reduced from 2.0 to 0.25 million seeds/acre. Economic return tended to be greatest when wheat was seeded between 1.0 to 1.5 million seeds/acre. There is no evidence that more seed is better, it only costs more money.

2.) Select high-yielding varieties with high test weight, good straw strength, and adequate disease resistance. Do not jeopardize your investment by planting anything but the best yielding varieties that also have resistance to the important diseases in your area. Depending on your area of the state, you may need good resistance to powdery mildew, Stagonospora leaf blotch, and/or leaf rust. Avoid varieties with susceptibility to Fusarium head scab. Plant seed that has been properly cleaned to remove shriveled kernels and treated with a fungicide seed treatment to control seed-borne diseases. The 2015 Ohio Wheat Performance Test results can be found at: http://oardc.osu.edu/wheattrials/

3.) Plant after the Hessian Fly Safe Date for your county. This date varies depending on state location – starting as early as September 22 for northern counties and as late as October 5 for southern counties. Planting before the Fly Safe Date increases the risk of insect and diseases problems including Hessian fly and...
aphids carrying Barley Yellow Dwarf Virus. The best time to plant is within 10 days after the Fly Safe Date. Delayed planting may result in reduced winter hardiness from inadequate fall growth. The Hessian Fly Safe Date for each county can be found at: http://ohioline.osu.edu/iwy/flydates.html

4.) Planting depth is critical for tiller development and winter survival. Plant seed 1.5 inches deep and make sure planting depth is uniform across the field. No-till wheat into soybean stubble is ideal, but make sure the soybean residue is uniformly spread over the surface of the ground. Shallow planting is the main cause of low tiller numbers and poor over-winter survival caused by heaving and freezing injury. Remember, you cannot compensate for a poor planting job by planting more seeds; it just costs more money.

5.) Apply 20 to 30 lb of actual nitrogen per acre at planting to promote fall tiller development. A soil test should be completed to determine phosphorus and potassium needs. Wheat requires more phosphorus than corn or soybean, and soil test levels should be maintained between 25-40 ppm for optimum production. If the soil test indicates less than 25 ppm, then apply 80 to 100 pounds of P₂O₅ at planting, depending on yield potential. Do not add any phosphorus if soil test levels are higher than 50 ppm. Soil potassium should be maintained at levels of 100, 120, and 140 ppm for soils with cation exchange capacities of 10, 20, or 30 meq, respectively. If potassium levels are low, apply 100-200 pounds of K₂O at planting, depending on soil CEC and yield potential. In Ohio, limed soils usually have adequate calcium and magnesium. Soil pH should be between 6.3 and 7.0. Wheat generally does not respond to sulfur on most Ohio soils unless fields are sandy, low organic matter, low CEC, and/or have a history of sulfur response. Sulfur should be applied on responsive soils in the spring unless applying elemental sulfur. The key to a successful wheat crop is adequate and timely management.

Combine Adjustments for 2015 Soybean Harvest
John Fulton (Kaylee Port was also a contributor to this article)

2015 represents another unique cropping year due to the wet weather conditions during spring planting and persistence through July. The result has been many fields with highly variable soybeans conditions with a few containing short soybeans. The variable crop conditions translate into variable harvesting conditions in terms of moisture and height. Therefore, proper setup and pre-season maintenance along with correct adjustments during combine operation will be important for the 2015 soybean harvest to minimize loss and bean damage.

Proper combine settings and attention to detail during soybean harvest reduces harvest losses. Short soybeans are especially difficult to feed into the header and through the combine. Short beans are difficult to convey into the header because they are often poded lower to the ground which increases the risk of loss.

A few simple combine adjustments can help to prevent grain damage and harvest loss. **Two areas of focus** for combine operators in 2015 should be ground speed and combine header settings to keep crop loss to a minimum. As a combine operator, material fed incorrectly into the header significantly impacts grain quality and loss. Consider, two important points:

- 4 soybean seeds per square foot equates to a 1-bu/ac loss. Acceptable harvest loss is 3% or less (approx. 1-2 bu/ac) in soybeans but improperly adjusted combines or an operator not paying attention to details can generate errors of 10% or higher, and
- 80% of harvest loss occurs at the header.
2015 is a year that operators need to focus on details and changing of soybean conditions. **Checking harvest loss will be important to keep the combine adjusted properly, especially in short and variable soybeans.** Total harvest loss can occur in three areas: 1) pre-harvest soybeans, 2) header and 3) combine. One should check these three areas within different locations in a field. Checking behind the combine represents total harvest loss but one must check pre-harvest loss before combining an area as well as just in front of the header (header loss). Combine loss equals the total harvest loss minus the pre-harvest loss. Checking all three areas determines if and what combine settings must be adjusted, especially header loss.

One of the first items for the season is to review the owner’s manual and/or consult your local combine dealer for help on proper combine settings specific to the crop and harvest conditions. The following provides a few suggestions on adjustments and operation factors in variable and short soybeans:

- A floating, flexible cutterbar and automatic header height control can improve the ability to maintain the header low and level to the ground during harvest.
- Take time and slow the combine down. Slowing up 0.5 to 1.0 mph in areas where harvest loss might be risky.
- Keep the cutter bar as low as possible for short soybeans and those that are dry. This point is important in areas with low plant populations and where more pods are on the lower portion of the plant, nearest the ground.
- Shorter soybeans require smaller clearances between the reel, cutter bar, auger and the feed conveyor chain, to ensure stems are feeding through the platform and into the feeder house.
- Ensure the sickle is sharp. Dull sickles tend to push stems over rather than cut them cleanly.
- Make sure to properly adjust guards and header to proper engagement angle as outlined in the operator’s manual.
- Check that stems are being cleanly cut across the header. If not, check for dull blades, improperly set header angle, other incorrect header settings, or reduce your ground speed.
- Keep an eye on reel speed and adjust to match soybean conditions and ground speed within the field. The rule of thumb is to keep reel speed ~25% faster than ground speed.
- Make sure the feeder house relative to the header is at the proper adjustment to keep material feed as efficient as possible.
- Importantly, make sure chains and bearings are properly lubricated and serviced on their stated time intervals. Belts should be tight and checked routinely.

Preparation of Storage Facilities for Grain Harvest

By Curtis Young

Protecting grain quality and ultimately the economic value of the grain begins long before the first acre is ever harvested. This pre-harvest activity is to prepare grain harvesting, handling and storage equipment and structures for the soon to be harvested corn and soybeans.

All pieces of equipment used in harvesting the grain should be cleaned, inspected, and repaired several weeks prior to the beginning of the harvest season. Like in real estate where the mantra is Location! Location! Location!, the mantra in grain harvesting and handling should be Sanitation! Sanitation! Sanitation! Starting with thorough cleaning of every piece of equipment through which or in which grain will be passed or hauled. Remove all traces of old grain from combines, combine heads, truck beds, grain carts, augers, lift buckets, grain pits, grain driers, bins and
any other equipment used for harvesting, transporting, and handling grain. Even small amounts of moldy and/or insect-infested grain left in equipment can contaminate a bin of new grain.

Since grain is usually in contact with grain bins for the greatest length of time, extra attention should be paid to the sanitation of these structures. Remove any grain or grain dust from inside the bins by sweeping or vacuuming empty bins and brushing down walls. Pay close attention to cracks and crevices, ledges over doors, and hollow tube ladder rungs on or in which grain could have been trapped from the previous storage seasons. Fans, aeration ducts, exhausts, and when possible, beneath slotted floors should be cleared of debris as well. Dispose of all debris in a lawful manner and away from the storage facility.

Sanitation outside of bins is as important as inside of the bins. Ideally there should be no vegetation (weeds, shrubs, etc.) growing up against the outside of the bin. Grain pests (insects and rodents) can be harbored in the vegetation. Bare ground covered with gravel or cement is preferred, but short-mown grass is tolerable. Remove any spilled grain from around the outside of the bin and storage facility.

Once storage structures have been thoroughly cleaned, carefully inspect them for signs of deterioration, especially for leaks and holes through which insects, birds or rodents can gain easy access to the stored grain or rain and snow can drip or blow in onto the grain to produce wet spots that can lead to mold growth. While inspecting for physical problems, one should also test aeration fans and driers for functionality. Check belts, bearings and gear boxes for wear and proper lubrication. Check electrical systems for corroded connections and frayed wiring before harvest. Mice like to nest inside electrical boxes where they are safe from predators. They will strip insulation from wires for nesting material and their urine causes corrosion. While inspecting control boxes, be sure to seal any openings through which mice could get in. Be sure that guards and safety shields are in place over belts, chains and intakes. Seal all leaks and make repairs to the equipment before you need them to manage the grain.

Once all cleaning and repairs have been completed, an empty-bin application of an appropriately labeled insecticide is advisable, especially in bins with difficult to clean areas and/or in bins with a history of insect problems. For empty-bin insecticide treatments that are applied as a liquid, allow a minimum of 24 hours for the sprays to dry before loading grain into the bin. It is preferable to have empty-bin treatments applied at least two weeks prior to harvest.

Registered empty-bin insecticides include: Tempo SC Ultra (cyfluthrin), Storicide II (chlorpyrifos-methyl plus deltamethrin) which is primarily used around small grains such as wheat, Centynal or Suspend SC (deltamethrin), Diacon-D IGR (s-methoprene = an insect growth regulator), and several pyrethrin products can be used to apply a surface treatment to the inside of the bin and provide a residual protection. Other products that contain diatomaceous earth and/or silicon dioxide such as Insecto, Protect-It, Perma-Guard and others may be utilized. Refer to the individual product labels for lists of insects controlled and application directions. Note: most if not all malathion products have removed stored grain uses from their labels.

If a bin is known to be heavily infested with insects, an empty-bin fumigation may be required to knock down insect populations before applying one of the above insecticides. The most readily available product for this purpose is phosphine gas producing materials such as aluminum phosphide and magnesium phosphide sold under a wide variety of trade names. Phosphine is an extremely toxic material and fumigations should be conducted by trained, experienced, licensed applicators.

Another measure one might take to reduce the chance of insect infestation is to apply a perimeter spray around the base and up the outside walls of the bin about 15 feet. This may only be necessary in areas where grain infesting insect movement has been observed on the outsides of the storage bins. There are several synthetic pyrethroids
(cyfluthrin, deltamethrin, permethrin, resmethrin, etc.) that can be used for this purpose as long as they do not come in contact with the grain.

Grain storage insecticide labels tend to change frequently. As always, check to make sure you are following the instructions on the product label and using the appropriate product for your situation. One also needs to be sure that the end-user of the stored grain does not have restrictions on insecticide uses on or around the grains that they are going to purchase. If growing specialty grains, check with your buyers before using insecticides.

A few more words of caution include, new grain should NEVER be stored on top of grain from a previous season's harvest; remove old grain and clean bins before adding new grain. Grains broken in the harvesting and/or handling process become more susceptible to infestation by insects and mold. Thus, adjust combines according to the manufacturer's specifications to minimize grain damage and to maximize removal of fines and other foreign material, move grains as little as possible, and limit the number of times and heights from which grains are dropped to reduce breakage.

Last but not least, review your safety procedures for working with flowing grain, grain harvesting and handling equipment, and personal protection. Anyone who works around the bins and grain handling equipment should know where to find shut-off switches, fire extinguishers, and emergency phone numbers. Being prepared for harvest will reduce the risk of accidents, and knowing how to react in an emergency can save lives.

Grazing Harvested Corn Residue, a Feed Alternative
By Stan Smith, PA, OSU Extension, Fairfield County

Not only is the lack of hay quality a concern this year, but many are suggesting that the equivalent of at least one entire cutting of volume has been lost due to the weather. Now with dry weather having crept across much of the state throughout August and early September, pasture growth is also suffering. Perhaps getting the calves weaned and allowing the cows to be placed onto lower quality feed may offer some relief. With Ohio farmers expecting to harvest 3.5 million acres of corn this fall, the crop residue that remains creates the potential for the cow herd’s feed supply to be extended well into fall.

Corn crop residue is practical for feeding dry, gestating beef cows in mid gestation providing they have average or better body condition. Managed correctly, one acre of corn residue can yield up to 60 animal unit grazing days (60 days of grazing for a 1000 pound animal).

Grazing “efficiency” will determine exactly how much feed is realized from corn residue and how long an area can be grazed. Moveable electric fencing can increase utilization up to 50% by allowing the cattleman to control the amount of area grazed thus, preventing the cattle from either selective grazing or trampling many of the leaves or husks. Strip grazing the cows will also reduce the potential for acidosis in situations where there may have been excessive field losses of grain. Simply dumping the cows onto the entire corn field will be least efficient but will allow more residues to remain on the field over the winter for cover. Cattle will select and eat the grain first, then the husk and leaves, and finally the cobs and stalks.

Fields containing corn residues should be grazed soon after harvest for optimum quality, and fields with poor drainage or compaction problems should not be grazed for extended periods of time. Producers with a Conservation Plan should check with NRCS to be certain that the grazing of corn stalks does not violate the Plan.

If corn stalk fields are not presently fenced, temporary electric fencing is an economical alternative. Often times harvested corn fields can be encircled with a single strand of poly or high tensile wire supported with fiberglass posts for less than $10 per acre. Even if a fence charger must be purchased to allow the grazing of corn residue, 30 or more
days per acre of feed may be provided a brood cow at a cost of under 33 cents/head per day. And, of course, the materials purchased to provide this temporary boundary may be reused from year to year, thus, making the “annual” cost of ownership even less.

For more information on grazing corn residue see the OSU Extension Fact Sheet “Grazing Corn Residue” at http://ohiolinr.osu.edu/anr-fact/0010.html. For answers to your questions regarding the proper construction and use of electric fence, see an “Electric Fence Review” by Rory Lewandowski published at: http://u.osu.edu/beef/2009/10/07/electric-fence-review/

Ashtabula County 4-H Fall Festival to be held on October 6, 2015
The Ashtabula County 4-H Fall Festival will be held Tuesday, October 6th from 6:00-8:00 p.m. during National 4-H week at the Expo Building at the County Fairgrounds. This family fun event is held to celebrate 4-H and encourage families who are interested in 4-H to come and learn about what 4-H has to offer. It also serves as a way to end the year for members who are currently enrolled in the program.

Fun fall food, like hot dogs, popcorn, caramel apples and cider will be served for donation to children of all ages. Exciting and interactive games and 4-H program information will also be available during the evening. Attendees are invited to bring their best decorated pumpkin and/or scarecrow for a chance to win great prizes.

If you would like information on the 4-H program in Ashtabula County, please contact Jenna Hoyt at 440-576-9008 or via email at hoyt.88@osu.edu or by visiting our website at www.ashtabula.osu.edu and visiting the 4-H Youth Development page.

Ashtabula County Farm Bureau and Ashtabula County Soil & Water Conservation District Banquet to be held on September 21, 2015
The Ashtabula County Farm Bureau and Ashtabula County Soil & Water Conservation District Banquet to be held on Monday, September 21, 2015 at the Winery at Spring Hill. The banquet will begin with a reception at 6:00 p.m. followed by dinner at 6:30 p.m. The cost to attend is $15 per person. Reservations were requested by yesterday but a few reservations will be accepted this week. If you are still interested in attending, call the Ashtabula County Farm Bureau office today at 440-437-8700 as a few seats still remain.

Ashtabula County Plat Directories Available
The Ashtabula County Plat Directory is available while supplies last for $35.00 + tax at OSU Extension. A fundraiser for the Ashtabula County 4-H program, this book makes a great gift for the avid hunter, hiker or bird watcher of the family! The Index Map shows each township’s geographic location in detail. A complete index of owners is listed alphabetically by last name in the back of the book. Call the Extension Office today at 440-576-9008 to reserve your copy.

OSU Searching for OSU Extension Educator for Trumbull County
OSU Extension in Trumbull County is now taking applications (until September 20, 2015) for an Agricultural & Natural Resources Extension Educator. The ANR Educator will provide overall leadership to developing and conducting a proactive applied research and education program in agriculture and natural resources to meet current and future needs in farm management, livestock and crop production, food security, home horticulture/Master Gardeners, commercial horticulture, farm land use issues, innovative agricultural business opportunities, environmental quality and sustainability, renewable energy, and bio-based products.

Required job qualifications include: Master’s degree and at least one degree in agriculture, natural resources, or a related field (plant science is preferred). The successful candidate will have strong written and oral communication
skills, and experience working with diverse clientele and organizations; demonstrated success in working as part of a team and initiating collaborative partnerships is sought; leadership ability, and strong teaching and subject matter expertise in at least one area of agriculture is necessary. Candidates must be willing to work flexible hours with minimal supervision. To learn more about this position (Job #400890) or to apply, go to: https://www.jobsatosu.com/postings/64757

Research Specialist / Research Station Manager Sought by OARDC For Ashtabula Ag Research Station in Kingsville, Ohio

The Ohio Agricultural Research and Development Center (OARDC)’s is searching for a Research Specialist & Research Station Manager for the Ashtabula Agricultural Research Station located in Kingsville, Ohio. This position is to fill the vacancy of Greg Johns who retired earlier this summer.

The Research Specialist position provides leadership in management, research, and outreach coordination for research and education programs at the OARDC Ashtabula Agricultural Research Station located in Kingsville, Ohio. Duties include implementation of independent field research on wine grapes and/or other crops of importance in Northeastern Ohio; writes grant proposals, conducts field based research, analyzes data, prepares summary reports and presents results at field days, workshops and other extension events; collaborates with investigators to conduct research projects at research station and commercial grower sites; provides advocacy information on behalf of the university to Ohio’s grape and wine industry; serves as research station manager – supervises/perform field operations tasks, including but not limited to tillage, plot layout, fertilization, pesticide application, trellis installation and maintenance, pruning, training and grape canopy management and pesticide application; hires, trains, and evaluates staff, supervises collection of data and samples, performs business functions including budget management, supply and equipment procurement and marketing crops; provides service to other research and extension investigators to maintain their research projects at the station; this is a non-tenure track position.

The required qualifications include: Master’s degree in horticulture, crop science, plant pathology, or entomology or an equivalent combination of education and experience; extensive experience in wine grape production in a research environment; working knowledge of experimental design, statistical analysis, effective communication of research results through various media including written, power point, and public speaking; excellent oral and written communication skills to maintain positive interactions with internal and external customers; proficient in use of email, word, database, and web browser software; holds or ability to obtain commercial pesticide operator’s license. Desired qualifications: Ph. D. in horticulture specialization in grapes or fruit crops or related field of study; farm machinery operation and repair; two years of supervisory experience.

For complete job posting or to apply, visit http://www.jobsatosu.com:80/postings/65042 The deadline to apply is September 20, 2015 or until suitable candidate is hired.

Farm Science Review Tickets Available at OSU Extension Offices and On-Line

OSU Extension is pleased to announce that Advance tickets for the Farm Science Review are available at all Ohio State University Extension county offices for $7. This year’s Farm Science Review will be held at the Molly Caren Agricultural Center in London, Ohio on September 22-24, 2015. Tickets are $10 at the gate. Children 5 and under are admitted free. The review hours are 8:00 a.m. to 5:00 p.m. on September 22 & 23 and from 8:00 a.m. to 4:00 p.m. on Thursday, September 24, 2015.

Tickets can be purchased at OSU Extension offices through Monday, September 21, 2015. Tickets can also be purchased on-line at fsr.osu.edu/onlineticketform. Online tickets are available to purchase for $7 until Sept. 11. Tickets ordered online will be mailed to the buyer.
Farm Science Review is known as Ohio’s premier agricultural event and typically draws more than 130,000 farmers, growers, producers and agricultural enthusiasts from across the U.S. and Canada annually. Participants are able to peruse 4,000 product lines from roughly 620 commercial exhibitors and engage in educational workshops, presentations and demonstrations delivered by experts from OSU Extension and the Ohio Agricultural Research and Development Center, which are the outreach and research arms, respectively, of the college. More information about the Farm Science Review is at http://fsr.osu.edu/

Vegetable of the Week - Turnip (Brasicca rapa)

Turnips have been around for a very long time. This veggie has been used for cattle fodder, as well as for human consumption. The typical turnip is a white, radish-like vegetable with a purple shoulder and hairy leaves. New varieties include all-white roots, red roots or reddish leaves. Grown from seed, turnips prefer a rich soil with ample moisture and grow best as spring or fall crops. Check roots frequently and harvest before they reach golf ball size; larger roots can be woody with a strong flavor. The roots do not store well, so only grow enough for fresh eating. Additionally, turnip greens can be harvested by picking individual young leaves before they become tough.

PLEASE SHARE...this newsletter with farmers or others who are interested in agricultural topics in Ashtabula & Trumbull Counties. Past issues can be located at: https://go.osu.edu/ag-news. Please tell your friends and neighbors to sign up for the list. CONTACT: marrison.2@osu.edu

Readers can subscribe electronically to this newsletter by sending an e-mail message to: marrison.2@osu.edu. If you would like to opt-out of receiving this newsletter, please e-mail marrison.2@osu.edu with the words: UNSUBSCRIBE

THE OHIO STATE UNIVERSITY

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES